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Final Report Summary

This report is aimed at developing the technology necessary to conduct

cost effective and efficient validations of the sequencing of instruction

used in the training of military occupational specialties. The overall

goal covered by this final report was to determine the congruence of psy-

chometric and instructional validation techniques for hierarchically

ordered domains. This was done through two investigations in the course

of two years. A total of 317 subjects were tested in the first project

year on two algebra skill domains constructed from the Precision Measuring

Equipment Curriculum of the Air Force Advanced Instructional System.

Latent structure techniques recently developed by Leo Goodman at the

University of Chicago were used to validate the hypothesized ordering between

domains. The first step in the analysis was to construct a set of models

representing hypotheses about the tasks under examination. The models

developed for use in the present analysis assumed three basic classes of

individuals for tasks in an hypothesized domain. These classes included

masters of the skill represented in the domain, non-masters, and individuals

in transition between non-mastery and mastery. Non-masters were character-

ized as failing all items in the domain, and masters as passing all items.

Transitional individuals were assumed to respond inconsistently in a manner

congruent with the assumption that they were still in the process of acquir-

ing the concept or rule underlying mastery of the tasks in the domain under

examination. Models asserting that tasks were in the same domain were

compared to models asserting that the tasks were hierarchically ordered.

A Texas Instrument 745 terminal purchased for the two-year project was

used in testing the extent to which the hypothesized models accurately repre-

f
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sented the observed performance of the subjects. The analysis revealed two

hierarchically ordered domains.

The finding of hierarchically ordered domains and the discovery that

tasks within a domain may vary in difficulty level raise questions about

generalization during the course of learning to master domain tasks. These

questions may have far-reaching implications for training. More specifically,

it mav be possible to use information about difficulty level within a domain

to determine where to begin instruction for the domain, and how to advance

from one domain to the next. This possibility has significant implications

for training efficiency.

In the second year of research, 626 subjects from the University of

Arizona participated in an investigation designed to examine congruence of a

math hierarchy validated psychometrically (Bergan, 1980; Resnick, 1973; Wang,

1973; 'ite, 1973) and validated instructionally (White, 1974). The hierarchy

consisted of quadratic and cubic equation tasks. Three studies comprised the

invcstigation. Study 1 validated a hierarchy of quadratic and cubic equation

tasks psychometrically. Studies 2 and 3 instructionally validated the domains

and prerequisite relations identified in Study 1 and examined generalization

and transfer between subordinate and superordinate skills.

The investigation incorporated latent structure techniques to validate

the hypothesized domains and ordering between domains. New models were

developed to represent response consistency in the contingency tables and to

represent different types of transitional states of learning. The models for

the second year were also able to distinguish between the prerequisite order-

ing of demains and ordering by difficulty within a domain.

The results of the three studies indicated a strong congruence between

hierarchies validated psychometrically and instructionally. This finding

suggests the possibility of employing the psychometric validation approach as
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a tool for gaining information about knowledge structures in a rapid manner.

This information could then be used to effectively and efficiently develop

tests for trainees.

It was also discovered that positive transfer occurred between the

subordinate and superordinate skills in hierarchically ordered domains.

The findings that generalization and transfer were evident between and within

domains has important implications for training. They suggest that training

could be targeted ahead of the learner's current level.

The statistical models employed in the second year of research could be

used to develop tests that could not only sequence training content, but also

could predict generalization and transfer within training sequences. These

developments could greatly serve to increase training efficiency and reduce

training costs.



Rationale for and Objectives

of the Proposed Research

Since the time that Robert GagnC (1962) introduced his learning-hierarchy

model in the early 1960's, there has been a growin, recognition of the use-

fulnecs of erriricallyv validated hierarchical learning sequences in teacher

based, conputer assisted, and computer managed training programs aimed at

promoting the acquisition of basic math and science skills or at the develop-

ment of performance capabilities related to various technical specialties pur-

sued in military and industrial settings (Glaser, 1976; Glaser F, Nitko, 1971;

Glaser & Resnick, 1972; Nitko [ I1su, 1974; Resnick, Wang , Kaplan, 1973; White,

1973, 1974). However, despite the recognized usefulness of hierarchies, vali-

dated hierarchical sequences that can be applied in training are lacking.

Moreover, there is at present no adequate, practical technology for conduct-

ing hierarchy validations. Unless such a technology is developed, the contri-

bution that validated sequences could make to training will not be realized.

The validation of a learning hierarchy requires the testing of three

hypotheses. One may be called the domain hypothesis and states that individuals

respond in the same way to all items in a given domain of items. More specifi-

cally, the hypothesis holds that masters of the domain will tend to perform all

items in the domain correctly while non-masters will tend to perform all items

incorrectly. Some versions of the hypothesis make provisions for individuals

in transition between non-mastery and mastery. Transitional individuals are

assumed to display inconsistent performance on items in the domain. The

second is that subordinate skills in a hierarchy are ordered prerequisitely

with respect to superordinate skills (Gagne, 1977), and the third is that

prerequisite skills mdeiate transfer for superordinate skills (Gagn', 1977).

II
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The present project is designed to invest[gate research questions related

to the testing of these hypotheses for the purpose of establishing guide-

lines that can be used in the development of a technology for hierarchy

validation.

The Need for Validated !licrarchies

The need for validated hierarchies stems from their recognized

potential value in training and from the fact that there are no adequately

validated hierarchies in use in training programs today. Validated

hierarchies could mal-e two kinds of contributions in training. One of

these relates to issues in instructional design, the other to assessment.

The Potential Role of Hierarchies in Instructional Design

The central advantage claimed for hierarchies in the area of instructional

design has to do with the development of instructional sequences to facili-

tate transfer of learning. In numerous places in the literature, Gagne has

advanced the view that lower level subordinate skills which are prerequisite

to superordinate skills at higher levels in a hierarchy mediate transfer

for the superordinate skills to which they are related (e.g., Gagne, 1962,

1962, 1973, 1977). The implication for instructional design is that in-

structional sequences should be arranged so that prerequisite skills are

available to the trainee at the time that superordinate skills are to be

/
mastered (Gagne, 1973).

Advocates of the learning-hierarchy view have pointed out that instruc-

tional sequences which ensure that prerequisite skills are available at the

time of learning may produce highly beneficial results (e.g., Gagne, 1973;

Glaser & Resnick, 1972). A sequence which takes into account prerequisite

skills maximizes the likelihood that trainees will have appropriate pre-

requisite competencies at the time they are needed for superordinate-skill

learning. On the other hand, a sequence developed without consideration for
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prerequisite relations leaves the question of whether or not trainees possess

needed prerequisite competencies to chance. The result may be that some

trainees will fail to master superordinate skills because they lack the

prerequisites to superordinate skill mastery.

The Potential Role of Hierarchies in Assessment

The main advantage of empirically validated hierarchies with respect

to assessment relates to the problem of adapting instruction to the needs

of individual trainees. Given validated hierarchies, tests may be developed

to individualize the placement of trainees in an instructional sequence

(Glaser & Nitko, 1971; Nitko & Hsu, 1974; Resnicl-, Wang, & Kaplan, 1973).

Placement tests based on validated hierarchies may be used in the initial

phases of instruction to determine the point in an instructional sequence

which will enable a trainee to encounter readily attainable goals and at

the same time to avoid activities related to objectives that have already

been mastered. In addition, placement tests may be used at the end of a

sequence to determine what has been learned and thereby to establish what

should be taught next (Nitko & Hsu, 1974).

li2 Current Lack of Validated Hierarchies

White and Gagne (1974) have noted that although the learning-hierarchy

model has had some influence on the development of instructional materials

it has not yet had the wide application that might have been expected. One

apparent reason for the failure of the learning-hierarchy model to have a

greater impact on training than it has had is that there are currently no

adequately validated hierarchies that could be used in training programs.
/

During the period since Gagne (1962) introduced the learning-hierarchy

model, there have been several studies attempting to validate isolated

/
hierarchical sequences (White & Gagne, 1974). However, early investigations

on hierarchies were marred by serious methodological flaws (White, 1973).
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White (1973, 1974) suggested modifications in hierarchy validation procedures

which eventuated in marked improvements in validation techniques. Despite

these advances, adequate hierarchy validation has not yet been achieved.

As indicated in the initial paragraphs of this report, adequate hierarchy

validation requires the examination of three hypotheses. Two of these

hypotheses have never been effectively tested in hierarchical research.

The domain hypothesis has never been adequately tested in hierarchy inves-

tigations. A few attempts have been made to assess the assumption that pre-

requisite skills mediate transfer for superordinate skills, but much of the

research in this area has had methodological flaws. Cotton, Gallagher, and

Marshall (1977) reviewed the literature on the transfer hypothesis and have

concluded that Gagne's transfer assumption has never been tested. Gagne's

third hypothesis, the prerequisite-skills assumption, has been subject to

intensive study (Wh1ite, 1973). However, the validation procedures used to

examine the prerequisite-skills assumption are methodologically flawed and

are extremely time consuming and may not be suitable for broad scale

appi ication.

Advances in Statistics that Make a Practical Technology f'r Hierarchy

Validation Possible

A major reason for the lack of progress in hierarchy validation

described above is that until recently appropriate statistical procedures

have not been available to test hypotheses germain to the development of

effective, practical procedures for validating hierarchies. A number of

procedures have recently become available which should make it possible to

conduct hierarchy validations in a practical and effective way.

New Techniques for Validating Prerequisite Relations. During recent

years Gagne's prerequisite-skills assumption has served as a focal point

for efforts to develop statistical procedures for use in hierarchy valida-

tion. White (1973) has shown that techniques used to assess prerequisite

jrelations by Gagne and his colleagues in early hierarchy research were
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inadequate in that they failed to provide a statistical test for prerequisite

associations which took into account errors in measurement. More recent

research on prerequisite relations using a variety of scaling techniques

including scalogram analysis (Guttman, 1944), multiple scalogram analysis

(lingoes, 1963), and the ordering theoretic method (Bart & Airasian, 1974;

Bart & Krus, 1973) has been faulted on similar grounds. None of these

procedures provides a suitable statistical test for prerequisite relations

(Airasian, Madaus, & Woods, 1975; Dayton & Macready, 1976; White, 1974).

During recent years a number of attempts have been made to develop

procedures to test Gagne's prerequisite-skills hypothesis statistically

(Emrick & Adams, Note 2; Murray, Note 3; Proctor, 1970; White & Clark,

1973). Dayton and MIacready (1976) have shown that each of these procedures

represents a special case of a general latent-structure model which has

the advantage of being capable of testing for prerequisite relations in

both linear and nonlinear hierarchies. Goodman (1974) has also developed

a latent-structure approach which can be used to test for prerequisite

ordrrings in linear and nonlinear hierarchies.

New Techniques for Validating Positive Transfer. Although attempts to

establish statistical techniques for use in hierarchy validation have focused

mainly on Gagne"s prerequisite-skills hypotheses, the need for procedures

to examine Gagne's second major hypothesis, the oositive transfer assumptions,

are equally great. A recent review by Cotton, Gallagher, and Marshall (1977)

attests to this fact. As indicated above, these investigators failed to

find a single published study which provided a suitable test of Gagne's

positive transfer assumption. Bergan (1980, in press) has shown that structural

equation models based on Sewall Wright's (1921, 1960) pioneering work in

path analysis can be used to assess positive transfer in a learning hierarchy.
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Structural equation procedures based on regression analysis (Joreskog &

Sorbom, 1978) are available for use with interval scale dependent measures

(Duncan, 1975; leise, 1975). In addition, Goodman (1972, 1973a, 1973b) has

developed structural equation techniques involving the use of log linear

models (Bishop, Fienberg, & Holland, 1975) that can be applied with dichoto-

mous and polytomous scores of the types typically used in hierarchy valida-

tion.

New Techniques for Domain Validation. Gagne" (1977) assumes that the

skills in a learning hierarchy represent response classes rather than dis-

crete behavioral capabilities. For example, within the learning hierarchy

viewpoint, it is assumed that a trainee who possesses a skill such as multi-

plying two mixed numbers will be able to use that skill to solve a broad range

of similar problems.

One of the major problems in hierarchy validation is to determine whether

or not the items on a test of skill performance measure the trainee's ability

to perform the full range of behaviors included in the response class assumed

to be represented in the skill under examination. lively (1974) uses the term

item domain to refer to the class of items associated with a given skill.

Ilively, Patterson and Page (1968) developed a set of rules for generating

test items falling within various domains. Since the early work of Hively and

his associates, other investigators have elaborated on the concept of item

domain and have attempted to develop item generating procedures for various

types of domains (Shoemaker, 1975).

Although awareness of the need to determine empirically the extent to

which specific test items represent an item domain has existed for some time,

statistical procedures for empirically validating item domains associated

with different skills have been lacking. For example, White (1974) in an

article on hierarchy validation, discussed the need for determining statis-

I

k______
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ticallv the extent to which different items assessed the same skill, but

was forced to conclude that there were no available statistical procedures

for making such a determination.

The Goodman (1974) and Dayton and Macready (1976) latent structure

procedures are suitable for use in empirically validating an item domain.

For instance, to test the hypothesis that a set of items belong within the

same domain using the Goodman latent structure technique, one could hypothe-

size a model composed of three latent classes. One of these would represent

those learners who had acquired the skill being assessed by the items in the

domain under investigation. Trainees in this group would be expected to pass

all domain items presented to them. The second type would represent learners

who had not acquired the skill in question. Trainees in this group would be

expected to fail all domain items which they encountered. The third class

would be composed of individuals in transition between non-mastery and mastery.

Either the cli-square goodness-of-fit or likelihood-ratio statistic can be

used to test the fit of a model of this type to a set of data collected on

item performance in the domain targeted for study.

A Structural Approach to Hierarchy Validation. The present research

combines use of the Goodman (1974) latent structure techniques with structural

equation procedures (Goodman, 1973a) in what may be termed a structural approach

tc hierarchy validation. The research examines the validity of item domains

in a hierarchy and addresses both Gagne s prerequisite ordering and positive

transfer hypotheses as these assumptions relate to the task of developing

practical procedures that can be applied in hierarchy validation in domain-

referenced assessment and training design. The hierarchical relations

selected for examination involve basic algebra skills included in military

training. The specific skills targeted for study were designed to be con-

gruent with the Precision Measuring Equipment Curriculum of the Advanced
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Instructional system (AIS), an individualized training program operated by

the Airforce at Lowrey Airforce Base. Analysis of these skills in the

present project not only affords general guidelines for the validation of

military training sequences, but also provides direct information that could

be used to improve the efficiency and effectiveness of military training

involving basic algebra skills.

Hierarchy Research Needs

Although adequate statistical procedures for examining hierarchical

relations are now available, information is lacking on how to go about the

validation process. Three kinds of research needs must be met before it

will be possible to determine the most efficacious procedures for validating

hierarchical associations. One of these involves the issue of how skills

should be measured in validating the prerequisite-ordering hypothesis. The

second has to do with skill measurement in validating the positive-transfer

hypothesis, and the third deals with domain validation in hierarchical

sequences.

Needs Related to Prerequisite-Skills Validation. One of the initial

steps in hierarchy validation is to test for hypothesized prerequisite

relations in the hierarchy under examination. Two strategies have been

suggested for accomplishing this task. Research is needed to determine

whether or not these two procedures yield different results.

One of the strategies used in prerequisite-skills validation is the

psychometric approach (Resnick, 1973; Wang, 1973). In this approach,

trainees are tested on skills under examination in a hierarchy, and a statis-

tical procedure is applied to determine the existance of prerequisite de-

pendencies. Some years ago White (1973) criticized the psychometric approach

on the grounds that it does not control for random forgetting. White took

the position that skills in a hierarchy may be forgotten in a different order

than the order in which they are learned. In accordance with this position,
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White (1974) argues that validation of the prercquisite-skills hypothesis

requires a validation procedure in which learners who do not initially

possess the skills in a hierarchy are taught the skills. le further suggested

that testing for skill acquisition should be conducted during the course of

learning rather than when instruction has been completed.

In support of the assumption of random forgetting, White cited only one

study, an early investigation by Gagne and Bassler (1963). There are a

number of reasons why the Gagne and Bassler study does not provide convincing

evidence for the random forgetting assumption. First, adequate statistical

procecures for testing the prerequisite skills hypothesis were unavailable

at the time of the CagnZ and Bassler investigation. Thus, it is not certain

that all of the prerequisite relations that were assumed to be shown by the

data actually did exist (White, 1976). Second, at the time of the investiga-

tion, there were no statistical techniques to assess the extent to which

observed differences between learning and retention reflected measurement

error as opposed to forgetting. Finally, the retention test which Gagne and

Bassler used involved items which were different from the tiems used to

assess learning. Thus, what Gagne and Bassler called a retention test could

also be described as a test of generalization.

j
Recognition of the lack of convincing evidence provided by the Gagne

and Bassler study has recently led White (1976) to suggest that the psycho-

metric procedure ought to be reconsidered for use in hierarchy validation.

The widespread application of hierarchical sequences in military training

will require the validation of vast numbers of hierarchies. The psychometric

approach to testing the prerequisite-skills hypothesis is much more efficient

than the instructional strategy advocated by White. If it were possible to

use the psychometric approach in the validation process and attain accurate

results, a huge savings in time and personnel would be realized . In view

of the superior efficiency of the psychometric approach and the lack of
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convincing evidence contra-indicating the use of the approach, research

to assess the efficacy of the psychometric technique is clearly warranted.

In this regard, there is a need to determine the extent to which hierarchical

models validated under White's instructional strategy match models validated

psychometrically. The present project is designed to meet this research

need.

As indicated in the discussion of the Gagne'and Bassler study, the

extent to which skills are retained in the order in which they are learned

has implications with respect to the utility of the psychometric approach.

In order to establish fully the utility of the psychometric validation

strategy there is a need for research on the question of whether or not

skills are forgotten in a different order than the order in which they are

learned. The present project addresses this research need.

Needs Related to Positive Transfer Validation. As indicated above

published studies assessing Gagne"'s positive transfer hypothesis are lacking.

One possible reason for this lack is that procedures advocated for testing

positive transfer are difficult and time consuming to implement. Many

investigators, particularly those studying complex hierarchies involving

many connections have dealt with the issue of transfer by ignoring it and

focusing instead on the validation of prerequisite relations (White &

Gagne', 1974).

Validation of Gagne's positive transfer hypothesis has generally been

conceptualized within a transfer-of-training paradigm. White & Gagne

(1974) suggest a validation strategy which illustrates this fact. The

White & Gagne approach involves the following steps: First, choose as many

prerequisite relations in the hierarchy under consideration as can be examinedI
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within existing constraints on time and resources. Second, for each con-

nection to be studied, identify groups of learners who possess all relevant

prerequisite skills, but who lack the specific prerequisite and superordinate

skills targeted for study. Third, conduct a standard transfer-of-training

experiment in which half of the learners receive training on the superordinate

skill. Positive transfer is indicated if learners receiving prerequisite

skill training perform significantly better on the superordinate skill train-

ing task than learners who do not receive prerequisite skill instruction.

As indicated above, Bergan (1980, in press) has shown that Gagne's positive

transfer hypothesis can be tested using structural equation models. Within

a structural equation approach, direct and indirect effects among a set of

variables can be examined in the absence of an experiment involving random

assignment of individuals to treatment conditions (Duncan, 1975; Goodman,

1972; Heise, 1975). For example, in the case of interval scale data, the

direct effects of one variable on another can be assessed using ordinary

least squares regression techniques (Duncan, 1975). The magnitude of the

direct effect of the first variable on the second is given by a structural

coefficient which in ordinary least squares regression analysis is the

regression coefficient in the regression equation.

A structural approach to testing Gagne's positive transfer hypothesis

is potentially more efficient than the procedure suggested by White and
/

Gagne (1974). The increased efficiency derives from the fact that structural

equations can be used with the same data collection procedures as those

employed in prerequisite skills validation. Thus, for example, structural

equations can be used to examine positive transfer using White's (1974)

instructional procedure for prerequisite skills validation. White's

instructional procedure requires less time and is more practical to implement
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than the White & Gagne (1974) transfer paradigm in that it necessitates

only one group of learners who are taught all skills in a linear sequence

whereas many groups learning different skills are needed to implement the

White and Gagne' transfer procedure.

Structural equations can be used to achieve an even greater gain in

efficiency than that associated with the use of the White instructional

technique if they are coupled in positive transfer validation with the

poychometric validation procedure. The psychometric procedure is, of

course, much more efficient than the White and Cagne approach in that all

that is required to implement the technique is to test a group of trainees.

To apply structural equations to test the assumption that prerequisite

skills mediate transfer for superordinate skills, prerequisite and superor-

dinate skills must first be identified. This can be accomplished using

prerequisite skills validation procedures discussed above. After prerequisite

and superordinate skills have been determined, a structural model comprised

of equations expressing hypothesized effects of previously validated pre-

requisite skills on superordinate skills can be constructed. Data from

either the White instructional procedure of the psychometric procedure can

then be used in testing model-data fit.

It is possible that structural equations used with the psychometric

procedure would not yield the same results as would be attained using White's

instructional paradigm. If this were to occur, it could be argued that

White's paradigm provided a more valid demonstration of transfer than a

structural equation approach using psychometric validation procedures in

that the White paradigm involves learning, whereas the psychometric approach

does not. However, if psychometric procedures could be assumed to yield the

same transfer relations as identified through the White paradigm, then a
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substantial gain in efficiency could be attained in the validation process.

Research is needed to determine the extent to which structural equation

techniques coupled with instructional or psychometric validation procedures

reveal the same transfer relations. The present project is designed to meet

this research need.

Needs Relating to Domain Validation. The validation of item domains

is an essential precursor to adequate examination of the other major

hypothesis involved in hierarchy validation. Without domain validation, it

is impossible to determine the extent to which test items reflect the response

classes that they arc assumed to represent. In the absence of domain valida-

tion, failure to confirm either prerequisite skills or positive transfer

hypotheses could be attributed to the possibility that the specific items

used in validation did not adequately represent hypothesized classes for

the skills under investigation.

The empirical determination of relations among tasks within domains

requires the construction of models to represent item domains. A number of

models assume some kind of equivalence relation among tasks in an item domain.

That is, they all assume that tasks will tend to be responded to in the same

way by at least some groups of individuals. For example, Dayton and Macready

(1976) have conceptualized item domains in terms of models that assume a

mastery class composed of individuals who tend to perform all domain tasks

correctly and a non-mastery class comprised of individuals who tend to fail

all taqks in the domain. By contrast, Bergan, Cancelli and Luiten (1980)

have described models based on Goodman's (1975) work in response scaling that

assume three classes of individuals in a homogeneous domain, non-masters,

masters, and what Goodman (1975) calls unscalable individuals. Masters are

assumed to perform all tasks in the domain correctly while non-masters are
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assumed to fail all tasks. Individuals in the unscalable category tend to

manifest responses inconsistent with non-mastery or mastery and may be

thought of as being in a transition state between non-mastery and mastery.

Varying assumption ; may be made about task difficulty (i.e., the proba-

bility of accurate performance) within mastery, non-mastery, or transitional

classes. i1ore specifically, it may be assumed that task difficulty varies

w;ithin classes or that it is equal across tasks within classes. For example,

consider two algebra tasks shown empirically to belong in a domain characterized

by problems in which a cormon term, say x, has to be factored from an ex-

pression such as (xa + xb). Suppose that the tasks were similar in all

significant respects except that one necessitated three steps to achieve

a solution and the other required only two steps. Suppose further that a

model including masters, non-masters, and transitional individuals were used

to describe relations among the tasks in this domain. Under this kind of

model, masters would be assumed to perform all tasks correctly. For masters,

the two tasks would be equally difficult in that the same proportion of

individuals (i.e., all individuals) would display mastery of each task.

Since non-masters would be assumed to fail all tasks, the tasks would also

be equally difficult for them. By contrast, the tasks could vary in diffi-

culty for transitional individuals. It would be reasonable to assume that

the problem requiring three steps for solution would be more difficult

than the problem requiring two steps for transitional individuals.

The possibility of within domain variations in task difficulty suggests

that in a certain sense there may be sequential ordering within domains as

well as between hierarchically related domains. As already indicated,

the tasks within a domain are assumed to be equivalent, but equivalence may

not always imply complete symmetry. Tasks that vary in difficulty for a

given class such as that of transitional individuals may be thought of as

being asymmetrically equivalent. Sets of asymmetrically equivalent tasks

may be ordered by difficulty to form a sequence within a domain. Nothino i
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known about the conditions that may produce asymmetrical equivalence relations

within a domain. The present report examines the hypothesis that tasks within

domains comprised of algebra problems will form asymmetrical equivalence

relations congruent with variations in the number of steps required to achieve

problem solution.

The presence of an ordered relation between tasks provides one criterion

that can be used to establish boundaries between domains. The concept of

domain boundaries is, of course, essential in delimiting the content of a

domain. Nonetheless, it is not necessary to think of boundaries as imper-

meable walls. Domains may include large numbers of tasks, and it is quite

possible that some inter-domain task comparisons may suggest boundary per-

meability. For example, suppose that a group of item sets were used to

assess performance on three academic tasks, A, B, and C. Assume that task A

was shown to be asvNmetrically equivalent to task B and that task B was found

to be asymmetrically equivalent to task C. In addition, suppose that an

ordered relation were observed in which A was found to be subordinate to C.

In a case such as this, A and C would be in separate domains, but B would

be in both the A domain and the C domain. Thus, the boundary between the A

domain and the C domain would be permeable. The present report examines the

possibility of permeability in domairn boundaries. In this connection it is

hypothesized that if permeability does exist, it will occur between tasks

at the higher levels of a subordinate domain and the lower levels of the

related superordinate domain.
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First Year Research

This section of the report details studies conducted during the first

project year. These involved the psychometric validation of algebra prob-

len solving domains (Task 1) and the psychometric validation of the hierar-

chical ordering of domains (Task 2).

Objectives For Tlie Fir-t Projeoct Year

Objectives for the first year of the project focused on the attainment

of Task 1 objectives. These include both outcome and enabling objectives.

Outcome Objective. To validate psychometrically the domains and the

ordering of item domains for algebra tests selected from an examination of

the Precision easuring Equipment Curriculum.

Enabling Objectives.

a. to construct and write item domains for each hypothesized domain.

b. To task analyze algebra skills from psychometrically validated

domains selected from the Precision Measuring Equipment Curriculum.

c. To construct a domain referenced test of items randomly selected

from each domain.

d. To ad1inIiter the test to approximately 200 subjects.

e. To score responses.

f. To construct and test latent class models to determine the extent

to which hypothesized models fit (i.e., accurately represent)

observed test performance.

Method

Subjects. The subjects were 317 volunteers from a high school and

university in the Southwest selected to represent a wide range of skill levels

in solving algebra problems. Subjects ranged from high school freshmen taking
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a first course in basic mathematics to university students, a number of whom

had had college math courses. There were approximately equal numbers of males

and females representing a broad spectrum of ethnic backgrounds. Approximately

88" were Anglo, 8% were Mexican-American, and 4% were divided among Blacks,

native Aerican Indians, and Asians. More subjects were used than the 200

orilinally intended for the study so that the full range of algebra skills

likely to be present in military trainees would be represented.

Tasks. A group of algebra tasks hypothesized to form an ordered set of

behavioral domains was selectad for use in conducting domain structure analysis.

Algebra was chosen because it is a highly structured content area. The

structured nature of the discipline facilitated the formulation of hypothesized

domains and domain orderings.

An adaptation of facet analysis (Ier:, 1973; :.'illmar-, 1974) was used in

formulating hypothesized domains and domain orderings. Facets were defined

a cl-sse- of Leaviora1 operations involved in performing algebra tas'zs.

Th-ree facets were identified for this study: transposition of terms, applica-

tion of the distributive property, and factoring. Each facet was hypothesized

to rcpre A- a h,9:.ogLnaus item domain.

Problems within each domain varied in terms of the number of steps

required to achieve problem solution. For example, some problems could be

solved in a single step such as multiplying both sides of an equation by one

term or expression. Other problems required as many as five steps for solu-

tion. It was assumed that item sets within each domain would form asymmetrical

equivalence relations sequenced in accordance with the number of steps neces-

sary for problem solution.

The hypothesized domains identified in the study do not represent inde-

pendent dimensions. For example, it is impossible to solve factoring problems

without transposing terms. The inclusion of operations defining one domain

___________ _________
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in pro!lema reflecting another domain suggested an ordering of the domains

congruent with Gagne's (1962, 1977) viev; that component tasks form an ordered

secuence. %n examination of the hypothesized domains to identify components

-s,-c ed that the term-transposition domain w;ould be subordinate to both

the distributiv;e property and factoring domil'n.

Problems illustrating the hypothesized domains are sho-wn in Table 1 in

Appendix A.

The first domain included problems requiring the transposition of terms

from one side of an algebra equation to the other. Transposition was effected

by one or more arithmetic operations (e.g., multiplication or subtraction).

For instance, the first problem shorn in Table I for this domaini required

transpositing the term A to the right side of the equation by multiplying

both sides of the equation by A. The second domain involved applcations of

the distributive property in which a single term had to be multiplied with

each of tw.o terms in an expression. The third domain required factoring

a common term from an expression. For example, 'in the problems in Table 1,

X must be factored from expressions including the terms N and R. Factoring is

regarded in algebra texts as an application of the distributive property.

This application involves a reversal of the multiplication operations carried

out in using the distributive property.

Each of the three hypothesized domains involved problems representing

an ordered set of elements. Ordering was based on the number of steps required

for problem solution. For example, the first problem show.n in Table 1 for

the term transposition domain required only one step to achieve problem

solution. By contrast, the second problem required two steps.

Variations in number of required steps were by necessity different for

different domains. For example, the simplest factoring problem required two
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steps for solution. First a common term X had to be factored from an expres-

sion. Then the expression had to be moved to the right side of the equation.

The tern transposition domain contained two step categories: one-step problems

and two-step problems. The distributive property domain contained three

step classes: three-step problems, four-step problems, and five-step problems.

The factoring domain contained the largest number of step categories. Factor-

ing problems ranged from two steps to five steps.

Test Construction and Scoring. Following the facet analysis, item forms

and item form shells (Hively, Maxwell, Rabell, Sension & Lundin, 1973) repre-

senting each of the domains and step categories within domains were constructed.

The item forms provided descriptions of the classes of problems to be solved,

stimulus and response characteristics of those classes, and cell matrices

indicating class variations. The item form shells indicated materials, direc-

tions, scoring specifications, and replacement rules for generating items.

The item form approach was used because it makes it possible to represent the

population of problems in a domain in a precise fashion.

Test items were constructed to correspond to item form specifications.

Two items representing identical problems were prepared for each type of

algebra task included in the study. These items varied only in the specific

letters used to represent equation terms. This made it possible to reflect

variations in response consistency in the models used to assess domain struc-

ture.

Each pair of terms representing a task was scored 1, 2, or 3. A 1

indicated that neither of the two items was answered correctly. A 2 indicated

that one of the two item pairs was answered correctly, and a 3 indicated that

both items were responded to correctly.
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Procedures. Testing was carried out in groups of about thirty. The

participants were told that the purpose of the study was to determine how

people solved algebra problems. After the test booklets were passed out,

the experimenter gave instructions for responding to the test. Trainees

were instructed to solve the algebra problems presented and to write their

solutions in the test booklets provided. Trainees were instructed to attempt

all problems and to provide solutions even in cases in which they were unsure

of the answers. Following the instructions the trainees were told to begin

the test and were assured that they would have as much time as necessary to

complete the problems. During the course of the testing, the experimenter

and an assistant monitored each subject's prformance to insure that the task

was understood. The vast majority of the subjects comprehended what they were

to do on the basis of the initial instruction. However, in one or two cases

there were some questions. ien this happened, the experimenter simply re-

peated the instructions for the individual having difficulty. In all cases

the repeated instruction was sufficient to enable the individual to respond

to the questions.

The Latent Class Approach

Latent class models (Goodman, 1974) were used to assess equivalence and

ordered relations among the algebra tasks examined in the study. Latent class

models explain association in a contingency table in terms of a latent (i.e.,

unobserved) variable or set of latent variables each of which includes a set

of latent classes. For example, in the present research latent class models

were constructed to reflect variations in task mastery. The latent variable

in this case was mastery variations. This variable included different latent

classes, such as a mastery class and a non-mastery class. A latent class model

can be used to generate maximum likelihood estimates of expected cell frequen-

cies which indicate expected response patterns under the assumption that the
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model being examined is true. A brief description of latent class techniques

is provided in Appendix C.

Latent class models are tested by assessing the correspondence between

observed cell frequencies and estimates of expected cell frequencies using the

chi-squared statistic. When the correspondence between observed and expected

frequencies is close, the value of X2 will be low and the model being tested

can be said to provide an adequate fit for the data. Clifford Clogg (Note 3)

has developed a computer program that carries out the iterative process used

to generate maximum likelihood estimates of expected cell frequencies and that

computes the X2 value to test the fit of a model to a data set. Clogg's pro-

gram was used in the present investigation.

Models Tested

The latent class models initially designed for the present project were

intended to distinguish between ordered and equivalence relations among

algebra tasks. For reasons to be discussed, these models were significantly

modified for the second year research. To understand why the models were de-

signed as they were, it is necessary to understand model distinctions involving

the ordering and equivalence of tasks. Consider Table 2 in Appendix A, cross-

classifying performance on two items. Thus, a subject's score for each task

may fall into one of three categories, zero right, one right, or two right.

These categories can be designated by the numbers 1, 2, and 3 respectively.

In a table of this kind, a score of 1 on each task would suggest non-

mastery. This response pattern would be reflected in the 11 cell in the

table. A score of 3 on each task would suggest mastery. This pattern is re-

flected in the 33 cell. A score of 3 on task A and 1 on task B would indicate

mastery of task A without evidence of mastery of task B. Scores of 2 would

reveal inconsistent performance characteristic of transition between non-mastery

and mastery. Since the items for each task are identical, scores of 2 should

reflect errors which ought to occur at a relatively low frequency.
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Given an ordered relation between tasks A and B, the number of responses

in the 31 cell should be significantly greater than the number in the 32

cell. Under the assumption of ordering, a build-up would be expected in the

31 cell indicating that a significant number of subjects had mastered A without

having begun to master B. The 32 cell would be expected to have relatively

few responses because the 2 category represer[ts response inconsistency for

task B.

If the tasks were equivalent, the number of individuals in both the 31

and 32 cells would be small since both these cells would reflect response

inconsistency. The relation between the 31 and 32 cells would not be crucial

so long as the probability for the 31 cell was not larger than the probability

for the 32 cell. Two relations between the 31 and 32 cells could occur

without contraindicating the equivalence assumption. Either the cells could be

equiprobable or there might be a significantly greater number of individuals

in the 32 cell than in the 31 cell.

As this discussion shows, a critical issue in determining whether two

tasks form an ordered or equivalence relation is that of determining whether

the hypothesis that the occurrence of responses in the 31 and 32 cells is

equiprobable is supported by the data. If this hypothesis is rejected, it is

necessary to determine whether the probability of a response in the 31 cell

is greater than the probability of a response in the 32 cell for masters of

task A. If this turns out to be the case, a model describing an ordered

relation between the tasks may be considered. If the probability for the 31

cell is not greater than the probability for the 32 cell, an equivalence model

may be suggested to represent the data.

Eight latent class models were examined in the study. The models are

described in the following paragraphs and are displayed visually in Table 3 (Arp.A)-

The E's and curved lines in the visual display indicate cells constrained to
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be equiprobable under a given model. The I's indicate cells for which the

assumption is made that the probability of a given response level on task A is

independent of the probability of any particular response level on task B.

The Xs indicate response patterns associated with specific latent classes.

For example, the x in the 11 cell of H1 indicates the association of the 11

response pattern with the non-mastery latent class.

The lndeoen±ence-Eguiprobabilitv 'Nodel. The first model, designated H0,

asserts independence between task pairs and equiprobability between categories

1 and 2 for the task assumed to be the least difficult in the task pair. This

model served as a standard against which to compare the other models tested.

The equiprobability provision was included to make the model congruent with

models being exammined. As mentioned earlier, the central criterion for

distinguishing bet.,'een ordered and equivalence relations is one asserting

equiprubability between certain task categories. The equiprobability provision

was included in model HO, as well as some of the other models examined, to

provide a basis for distinguishing between ordered and equivalence relations.

If there had been any instances in which model H0 provided an adequate descrip-

tion of tasks in the domain under examination, the hypothesis that the tasks

were not related would have been supported.

The Model of Symmetry. Model H asserted symmetrical equivalence between

tasks. Model H included 6 latent classes: a non-mastery class, a partial

mastery class, a mastery class, and 3 transition classes reflecting symmetrical

inaccuracies in responding. The 3 classes assuming inaccurate responding

each asserted equiprobability for one pair of cells in the table cross-classi-

fying the tasks under examination. For example, one of these classes asserted

idm
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that the probability of the 12 cell would be equal to the probability of the

21 cell. The second asserted that the probability of the 13 cell would be

equal to the probability of the 31 call, and the third assumed that the

probability of the 23 cell would be equal to the probability of the 32 cell.

Because of the symmetrical nature of its equiprobability restrictions, this

model has been described in the literature as the model of symmetry (Bishop,

Fienberg, & Holland, 1975). The model of symmetry implies equal item diffi-

culty for the tasks under examination. Tasks for which this model provided an

adequate fit for the data were described as being symmetrically equivalent.

Asymmetrical Equivalence Models. Model H2 included 3 latent classes, a

mastery class, a non-mastery class, and an unscalable class composed of transi-

tional individuals. Model 112 assumed that masters would respond correctly to all

problems presented to them. Thus, in the mastery class the probability of

the 33 response pattern was restricted to be 1. Similarly, the model assumed

that non-masters would fail all problems. Thus, in the non-mastery class

the probability of the 11 category was restricted to be 1. It was presumed

that in the unscalable category, the probability of a particular level of

performance on one task would be independent of a given level of performance

on the other tasks, and that the 1 and 2 categories would be equiprobable

for one of the tasks. The equiprobability restriction was included as a

criterion for distinguishing between equivalence and ordered relations for

reasons already discussed.

Model II is a special case of model H . It is like model H. in all
2 2* 2

respects except that is does not include the equiprobability restriction

imposed under H 2 . Model H was included to reflect the fact that two tasks
2' 2

may be equivalent even though the 1 and 2 categories of the more difficult

task are not equiprobable. It may happen that the probability of a response
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in the 32 cell is greater than the probability of a response in the 31 cell.

This is exactly the opposite of what is to be expected under the hypothesis

of an ordered relation between tasks. '.Then the hypothesis of equiprobability

is rejected, but the probability of the 32 cell is greater than the probabi-

lity of the 31 cell, it is appropriate to test models which assert equivalence,

but which do not include equiprobability restrictions. MoJel H 2 ' is one

such model.

IModel H included 4 latent classes, a non-mastery class, a partial
3

mastery class, a mastery class, and an unscalable class. The partial mastery

class was similar to the unscalable class in that both reflected less than

completely accurate responding on the part of examinees. However, model H3

asserted that individuals in the partial mastery class consistently performed 1

out of 2 problems correctly on both tasks under examination for a given task

pair. More specifically, the partial mastery class asserted that for members

of that class the probability of getting 1 out of 2 items correct for both

tasks would be 1. The unscalable class did not assume this kind of consistency

in partially accurate responding.

Model 11 ' assured four latent classes, a non-mastery class, a partial

mastery class, a mastery class, and an unscalable class. The restrictions

for non-mastery, partial mastery, and mastery classes were the same as those

given for H3 . Moreover, similar restrictions were imposed for partial

mastery.

Model it3' differed from H3 because it did not impose ax equiprobability

restriction in the unscalable category. The concept of partial mastery

implies a significant number of individuals who get 1 problem right. Given

this state of affairs, not only should a build-up of individuals in the 22

category be expected, but also it would not be unreasonable for the
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probability of occurrence of the 32 category to be greater than the probability

for the 31 category. 'Nodel 1 3 reflects the fact that equiprobability need

not always occur in a model asserting equivalence between tasks.

E:odel ' 4 is very simila, Lo H2. The difference between the two is

related to the equiprobability restriction in the unscalable class. In

asserting both independence and equiprobability, model I14 necessarily makes

th 'I and 22 cells as well as the 31 and 32 cells equiprobable in the

unscalable latent class. Equiprobability does not obtain for the 11 and 12

cells because the 11 cell represents a separate latent class, i.e., the non-

mastery class. Model 114 restricts equiprobability in the unscalable class to

the 31 and 32 cells. This is accomplished by making the 21 cell represent a

separate latent class. The probability of the 21 response pattern in this

class is restricted to be 1. The effect of this is to make the observed

and expected cell frequencies for the 21 pattern equal. Thus the pattern

contributes nothing to the value of X With the exception of the restriction

on the 21 cell, model R4 is exactly the same as H2 ' Like R4, it contains

mastery, non-mastery and unscalable latent classes. Moreover, the restrictions

on the mastery and non-mastery classes are the same as those for H . The

unscalable category assumes independence between tasks with the 21 pattern

ruled out of consideration. In addition, it asserts equiprobability for the

31 and 32 cells.

An Ordered Relation Model. Model H asserted an ordered relation be-
5

tween task pairs. This model contained four latent classes, a non-mastery

class, an unscalable class, a mastery class and a subordinate task mastery

class. The restrictions in the non-mastery and mastery classes were identi-

cal to those used in the equivalence models. Independence was assumed in

the unscalable class. In the subordinate task mastery class the probability
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of passing both subordinate task items was assumed to be 1. The proba-

bility of passing both superordinate task items was assumed to be zero and

the probabilities of getting no correct responses and I correct response on

the superordinate task were set equal to the observed proportions of

responses in those two categories. The last of these restrictions was

imposed so that all individuals who had mastered the subordinate task

including those in transition toward superordinate task mastery would be

included in the latent class reflecting subordinate task mastery.



-28-

Results

Within Domain Results. Results of the model testing within-domains revealed

two domains instead of the three hypothesized. The factoring and distributive

property problems turned out to be in one domain. Tables 4 and 5, in Appendix A,

present the observed responses for the cross-classification of every possible

task pair for each of the two domains. Table 4 shows the cross-classification

for the term transposition domain while Table 5 displays the cross-classification

for the Distributive Property-factoring domain. In Table 4 the letters indicate

the addition-subtraction (A) and multiplication-division (M) dimensions. In

Table 5 they stand for factoring (F) and distributive property (D) problems.

Numbers in both tables represent the number of steps required for problem solutien.

The response patterns in the tables indicate various combinations of

the number of correct responses for each task pair examined. For example,

the 11 pattern indicates no correct responses on either task while the

33 pattern represents 2 correct responses for each task. Note the large number

of responses falling in the 11 and 33 categories in the tables. These patterns

represent the critical cells for establishing equivalence relations. Notice

further that most task sets have about the same number of individuals in the

31 and 32 cells. The 31 cell represents individuals who have mastered one

task, but have not begun to acquire the second task. As already indicated,

given an ordered relation between tasks, the number of individuals in the

31 cell would be expected to be larger than the number of individuals in the

32 cell. On the other hand, given an equivalence relation between the tasks,

the number of individuals in both the 31 and 32 cells would be expected to

be small.
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Tables 6 and 7, in Appendix A, present the results of model testing

for the hypothesized domains. In the model testing process, all possible

pairs of tasks within a given domain were compared. Table 6 shows the chi-

squared tests for all possible task pairs in the term transposition domain.

The letters designating tasks refer to the addition-subtraction (A) and

multiplication-division() dimensions for this domain. The numbers refer

to the number of steps required for problem solution. For example, 1 refers

to a problem requiring only one step for solution.

The model testing process required the selection of a preferred model

based on statistical comparisons among various models examined. To illustrate

the comparison process, consider the results for 11 and 11 for the Al-:,
0 2

task pair given in Table 6. The X2 value for model t0 is 200.65 with 5 1

degrees of freedom, which is significant well beyond the .01 level. The

22
X2 au for model 112 is 1.18 with 3 degrees of freedom which has a p value

of about .90. l'odel 110 and H2 are hierarchical. That is, 112 contains all

of the characteristics of H plus 2 additional characteristics. These addi-

tional characteristics reflect the inclusion of a mastery and non-mastery

latent class under H2 . .u'el 112 has 3 degrees of freedom, whereas H0 has 5.

The loss of 2 degrees of freedom reflects the inclusion of the non-mastery

and mastery latent classes. Because It and H are hierarchical, they can be
0 2

2
compared statistically (Goodman, 1974). The X for H2 can be subtracted from

the X2 for H0 . The result will be an X2 with 2 degrees of freedom. In the
0*

case of the Al-1tl task pair, the subtraction of H2 from 10 yields an X

of 198.47 with 2 degrees of freedom, which is significant far beyond the .01
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level. M:odel H2 provides an excellent fit for the data. Moreover, none of

the models improve over H2 . Consequently, It2 was selected as the preferred

model for the Al-1,1 task pair. Not all of the models in Table are

hierarchically related. For example, HIP the symmetry model, is not hier-

archically related to either I0 or H2 . Consequently, it is not possible to

compare H1 directly with H0 or H2 .

The results on Table 6 show that in no case did model H0 or H1 provide

an acceptable fit for the data. Consequently, the hypothesis that the task

pairs under examination were unrelated and the hypothesis that they wTere

symmetrically equivalent could be rejected for all of the tasks investigated.

In all cases except one, one of the asymmetrical equivalence models

provided an acceptable fit for the data. In some instances, the model in-

cluding an equiprobability restriction provided an adequate fit. In other

cases, for example in the case of task pair Al-t2, the equiprobability assump-

tion was rejected. However, the probability of being in the 32 cell was

found to be higher than the probability of being in the 31 cell. Consequently,

it could safely be concluded that the tasks for this pair were not ordered.

The one instance in which the hypothesis of equivalence relations was

rejected was that involving the tl-112 task pair. The two tasks involved in

this comparison represented marked differences in difficulty level within

the item domain. The one-step addition problei., vas the simplest task in

the domain, whereas the two-step multiplication problem was among the most

difficult. N1odel H5 provided an acceptable fit for these tiwo tasks indicating

an ordered relation between them. The ordered relation for the A1-112 task

pair suggests permeability in domain boundaries. Tasks Al and A2 are in the

same domain. A2 and 112 are not in the same domain. The fact that Al and

1[2 are found to be in separate domains suggests that the boundaries between

domains may not be rigid.



-31-

The results for the term transposition domain reflect a highly consis-

tent pattern. As already indicated, the hypothesis of asymmetrical equiva-

lence was supported in every instance except one. The asymmetrical equiva-

lence observed in the domain reveals a structured arrangement of tasks.

The tasks requiring two steps for problem solution are more difficult than

tnose requiring only a single step.

Table 7 shows the results of model testing for the combined distributive

property-factoring domain. The letters in Table 7 refer to factoring prob-

lens (F) and distributive property problems (D), and the numbers indicate

the number of steps required for problem solution.

As in the case of the transposition domain, the results for the combined

distributive property--factoring domain reveal a highly consistent pattern.

In most instances, one of the asymmetrical equivalence models provides a

suitable fit for the data. However, in some cases, the model of symmetry

fit the data to an acceptable degree. This suggests that at the higher

levels of algebra skill, problems are more likely to be equivalent for all

groups of individuals, including those in transition. This is understan-

dable since those in transition with respect to higher level skills bring a

broad background of subordinate skills to the task of solving higher level

factoring and distributive property problems.

In only one case did a task not form an equivalence relation with other

tasks. This was the case for the most difficult factoring task. Model

H5 provided an acceptable fit for comparisons involving this task. Model

testing revealed that this task was superordinate to all of the other dis-

tributive property and factoring tasks. Analysis of the characteristics

of the task revealed that it required not only factoring, but also appli-
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cation of the multiplication operations used in distributive property problems.

This suggests the existence of a superordinate domain hierarchically related

to the factoring-distributive property domain. Further research is needed

to investigate this possibility.

Between Domain Results. Table 8, in Appendix A, presents observed response

patterns for the cross-classification of tasks representing the term transposi-

tion and factoring-distributive peroperty domains. Note the large number of

individuals attaining the 31 response pattern and the relatively small number of

individuals for the 32 pattern. This is what is to be expected under the

hypothesis of an ordered relation between task pairs.

Table 9 in Appendix A, shows the chi-squared tests for the cross-

classifications in Table 3. In all cases model if5 afforded an acceptable

fit for the data, and in all cases except four model H5 was preferred

over the other models tested. T-o equivalence models were preferred over

H5 in these four cases. .'ode! H4 was preferred for the comparison involving

two-step addition and three-step application of the distributive property

and the comparison of two-step addition with the five-step distributive

property problem. Lodel H3 was preferred for the comparison of two-step

multiplication and two-step factoring. These cases provide additional

evidence of boundary permeability.

Figure 1 sumnarizes both the within-domain and between-domain findings.

The circles indicate domains. Ordering of tasks within domains and between

domains is indicated by position in the vertical dimension. The long

tube penetrating the two circles represents permeability in domain boundaries.
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i~stribution (4 steps)/

factoring (4 steps)

Distribution (3 ste)/ Factoring/Distributive Property
factoring (3 steps)
factoring (2 steps)

Addition/subtrac-
tion (2 steps)

Multiplication/divi-
sion (2 steps)

Tern Transposition Ifultiplication/division
(1 step)

Addition/sub tract ion
(I step)

Figure 1.

Discussion

The results for task comparisons both within and between domains

supported the major hypotheses advanced in the study. The within-domain

findings are congruent with the view that algebra tasks representing a

class of mathematical operations may be organized into homogeneous

domains that involve asymmetrical equivalence relations. Iforeover, as

hypothesized asymmetrical equivalence is related to the number of steps

required to achieve problem solution. The discovery of asymmetrical

ordering raises questions about generalization and transfer within domains

that may be important for instruction. For example, it is possible that

instruction in a high difficulty task but also in generalization to low

difficulty tasks. By contrast, instruction in a low difficulty task
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might not generalize Oirectly to high difficulty problems. However,

mastery of a low difficulty task could mediate positive transfer facili-

tating high difficulty task learning. Possibilities such as these call

for research relating domain structure to generalization and transfer

issues.

The unexpected finding that factoring and distributive property

problems involving term and expression multiplication were in the same

domain suggests that homogeneous domains may encompass rather broad

classes of tasks. While it is true that factoring and multiplying an

expression by a term are both regarded by mathematicians as applications of

the distributive property, these tasks arc nonetheless quite different

in terms of the specific operations that they require. The fact that

they were found to be in the same domain suggests that generalization

of algebra skills may be very broad indeed. Pesearch is needed to

determine the breadth of generalization within domains.

The results for the between domain comparison support the hypothesis

that ordered relations may exist between pairs of tasks in which one

task is a component of the other. This finding linked to the within-

domain results raises additional generalization and transfer questions

with potentially important instructional implications. All of these

relate to the question of how a student can best advance from a subor-

dinate domain to a superordinate domain. For example, it would be of

interest to know whether positive transfer would be significantly greater

from a high difficulty subordinate domain task to a low difficulty

superodinate domain task than from a high difficulty subordinate task

to a high difficulty superordinate task.
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The results with respect to boundary permeability raise additional

questions regarding advancement from a subordinate to a superordinate

domain. The findings suggest that permeability may exist and thereby

raise the possibility of direct generalization between subordinate and

superordinate domains. Hoever, ambiguity in the permeability findings

indicate the need for further research on the permeability phenomenon

before conducting generalization s;tudies. Permeability did not always

occur in the manner hypothesized. In some cases it did take place as

expected between the top level of the subordinate domain and the bottom

level of the superordinate domain. However, in other instances it

involved problems not adjacent to the domain boundary. This can be

explained by the fact that to some extent permeability may be a function

of unreliable responding. For example, a large number of individuals

performing inconsistently on an hypothesized superordinate task would

produce a buildup in the 32 cell that could mask the presence of an

ordered relation. Examination of the observed response patterns in

Table 9 suggests that some instances of apparent permeability may have

resulted from high levels of inconsistent superordinate task responding.

Ho'wever, it is also true that the numbers in the 31 cell were generally

smaller for task pairs close to the boundary between domains than for

pairs far from the boundary. This suggests permeability. In order to

resolve the permeability question, constant low levels of inconsistent

superordinate task responding w.ould be required. Further research is

needed to study the relation of permeability to response inconsistency.
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Second Year Research

The major focus of research for the second year was on the instructional

validation of domains (Task 3) and hierarchies (Task 4). A different set of

problem solving tasks was used because of observed ceiling effects for the tasks

used in the first year. The tasks were too easy. Consequently, it was nece-

ssary to select a new set of algebra tasks and psychometrically validate these

before proceding to the studies for Task 3 and Task 4. The second year research

contained both outcome objectives and enabling objectives for the completion

of Tasks 3 and 4.

Second Year Objectives

Outcome Objectives.

a. To validate item domains using an instructional validation technique.

b. To determine the extent to which psychometrically validated domains

match domains validated using an instructional validation technique.

c. To validate hypothesized prerequisite relations and positive transfer

in the training hierarchy using an instructional validation procedure.

d. To determine the congruence between psychometric and instructionally

validated models assessing prerequisite relations and positive trans-

fer in the training hierarchy.

e. To test the Gagne'and Bassler (1963) random forgetting hypothesis by

examining the congruence across learning and retention testing sessions

of validated models describing prerequisite relations and positive

transfer in the hierarchy.

The Enabling Objectives

a. To develop new tasks to meet the constraints of the data pool to be

used. The simple algebra tasks employed in the first year were not
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appropriate for a college population.

b. To develop new models which represented different types of transi-

tional classeswhich represented the distinction between prerequisite

ordering between domains and ordering by difficulty within a domain,

and which incorporated response consistency into the contingency

tables.

Models Used in the Second Year

New latent class models were developed for research in the second year.

The models used in the first year did not allow for a specific test of Gagne's

prerequisiteness hypothesis. Rather they tested for order on the basis of the

assumption that under hierarchical ordering of two tasks there should be sig-

nificantly more individuals who were masters of the superordinate task while

being nonmasters of the subordinate task than who were masters of the super-

ordinate task and in transition on the subordinate task. The models developed

for the second research effort directly address the prerequisiteness question.

They show that prerequisiteness alone is insufficient to determine ordering.

However, they indicate that prerequisiteness can be used with other criteria

to determine ordering. The models also provide explicit representation of

various types of transition reflected in different kinds of response incon-

sistency. Different types of transition may occur when tasks are related, but

not exactly the same. This is a typical state of affairs for most tasks of

both academic and technical nature.

The first of the new models, labeled H1 in the second year studies, des-

cribes the situation in which a domain is composed of only one task represented

by equivalent items. Model HI includes three latent classes: A class of non-

masters who fail all items in the domain, a class of masters who pass all items,

and a class of transitional individuals for whom the probability of a passing
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response is greater than zero and less than one. Since H is designed to

represent relations among equivalent items the prubability of a passing

response in the transitional class is assumed to be equal across items.

Model 1H is congruent with the learning hierarchy model representation of

hierarchical sequencing. The learning hierarchy approach assumes that each

task in a hierarchy represents an equivalence class (Gagne, 1977). This is

the assumption made under model H1 . Items grouped into an equivalence class

form what Macready and Merwin (1973) have called a homogeneous item domain.

Model H1 offers one way to represent a domain of this kind (Bergan, in press;

Bergan, Cancelli & Luiten, 1980).

The following restrictions are imposed on the conditional probabilities

within the latent classes under model H 1:

21 = 7 21 = T 21 = T 21 =

12 " 7 12 21 21=1

IX13 = t' 13 =I~ 13  T 1 3

where r X is the pribability of failing item A given membership in latent21

AXclass 1 (nonmastery class), 7 12 is the probability of passing item A given

membership in latent class 2 (mastery class), and 7 13 is the probability of

passing item A given membership in latent class 3 (transition class). The

other response probabilities are similarly defined.
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Model H2 represents a multiple task domain. Two tasks, each composed of

two items are represented in the model. Model H2 includes all three of the

latent classes representcd in HI  In addition, it includes latent classes

reflecting the assumption that the domain under examination contains similar

but non-equivalent tasks. The assumption of related, but non-equivalent tasks

suggests that there should be some tendency for performance on items re-

presenting the same task to be more similar than performance on items repre-

senting different tasks. This tendency implies that the transition between

non-mastery and mastery will include cases of partially inconsistent perfor-

mance. That is, there should be some tendency to perform consistently on one

task while responding in an inconsistent fashion on the other. Four types of

partial inconsistency could occur. These include non-mastery of task I accom-

panied by transitional respondin for task II, mastery of task I with transi-

tional responding for task II, non-mastery of task II linked to transitional

responding on task I and mastery of task II coupled with transitional responding

on task I. Each of these four types of partial inconsistency is represented

by a latent class in model H2.

The probability of the different classes of partially inconsistent per-

formance is allowed to vary under model H2 . For example, the probability of

performing task I items correctly while responding inconsistently on task II

items could be higher than the probability of performing task II items correctly

while responding inconsistently on task I items. This type of variability

reflects differences in task difficulty during the transition between non-

mastery and mastery.

Assumptions about partial inconsistency are reflected in the following

restrictions on transition classes:
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=114 = I 24' T 24 = E 24

r 1 5 = r X1 5 = ' rB 1 5 T 2 5

ix 'x Bx B'x
26 = 26 i, I 16 I 26

rAX T A'X T BX r  = X

17 27' 17 17

Note that in each of the above transition classes the restrictions for the

items representing one task indicate consistent responding and the restrictions

for the other task indicate inconsistent responding. For instance, in latent

class 5, items A and A' are restricted to occur at level 1. By contrast, items

B and B' are restricted to represent inconsistent responding.

odel 11- is exactly the same as model H2 in all respects except that it
2

imposes restrictions on the latent classes that represent the case in which

tasks within a domain are assumed to be of the same difficulty level for transi-

tional individuals. The assumption of equal difficulty is reflected with the

following restrictions on the latent classes in the model:

X X X X
7T 4 T 6 , r 5  T 7

where T 4 is the probability of occurrence of latent class 4 and the others are

similarly defined. The first restriction depicts the assumption that the

probability of consistently failing task II while responding inconsistently to

task I will be equal to the probability of consistently failing task I and

responding inconsistently to task II. The second restriction handles the same

assumption with respect to passing the items.
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Models It4 and H5 are designed to represent the hierarchical ordering of

skills. The learning hierarchy model has been highly influenctial in providing

a basis or establishing hierarchical ordering. The sole criterion used to

determine hierarchical ordering within the learning hierarchy model is the

prerequisitiness criterion (Gagne, 1962, 1977; White & Clark, 1973). This

criterion states that one skill is prerequisite to another if, given suitable

allowance for measurement error, no one has mastered the superordinate skill

without also having acquired the subordinate skill (White & Clark, 1973). This

criterion is not sufficient to establish an ordered relation between skills.

The difficulty with the prerequisite skills criterion is that it does

not distinguish between equivalence and hierarchical ordering. For example,

consider the case of two identical tasks. If the tasks are truly identical,

individuals who have mastered one should also evidence mastery of the other.

Likewise, individuals who are nonmasters of one should display nonmastery of

the other. Finally, individuals in transition between nonmastery and mastery

should perform inconsistently on both tasks. Given appropriate allowance for

measurement error, there should be no one who displays mastery on one task and

nonmastery on the other. As this example shows, equivalence is a special case

of prerequisiteness in which the prerequisiteness criterion can be applied

regardless of which task is assumed to be superordinate.

Models H 4 and H5 ,used to represent hierarchical ordering in the present

research, assume that the central criterion for establishing ordering should

be the existence of a class of individuals who have mastered the hypothesized

subordinate skill and at the same time are nonmasters of the hypothesized

superordinate skill. The prerequisite criterion is used as an additional tool

in establishing ordered relations. Thus, two kinds of ordered relations aro

assumed. One requires only that there be a group of individuals who have

mastered a subordinate task and at the same time are nonmasters of the super-
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ordinate task. The second also imposes the prerequisiteness criterion.

Model H4, the ordered relation model, includes all the latent classes

in model H 2 plus an additional class. The additional class involves indivi-

duals who are masters of the subordinate task and nonmasters of the super-

ordinate task. This class provides the fundamental criterion for determining

ordered relations and the following restrictions are imposed upon it:

I A 18 =  T 18 =  I 28 28

where 7 18 is the probability of passing item A given membership in latent

class 8 and BX 28 is the probability of failing item B given membership in

latent class 8. The other conditional probabilities are similarly defined

Model H4 assumes ordering, but it is not entirely consistent with the

assumption of prerequisiteness. For example, H 4 includes transition indi-

viduals who may respond as nonmasters of the subordinate task but who respond

inconsistently on the superordinate task.

Model H5 represents a prerequisitely ordered relation between tasks. It

reflects ordering and the notion of prerequisiteness by ruling out the transi-

tion classes inconsistent with the hypothesis of ordering. Model H 5 is like

If4 except for the exclusion of two transitional classes. One of these classes

depicts inconsistent superordinate task performance accompanied by nonmastery

of the subordinate task. The other represents mastery of the superordinate

task accompanied by inconsistent performance on the subordinate task.

Model H can be used as a basis for establishing the boundary between
5

hierarchically ordered domains (Bergan, Note 4). The use of H in boundary
5

definition ensures that there will be a significant number of individuals

who have mastered the tasks in the subordinate domain without having mastered

the tasks in the superodinate domain. In addition it assures conditions

compatible with Gagne's (1962) prerequisiteness criterion.
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The latent class models described above were used in the studies described

below to represent the domain hypothesis and prerequisite ordering hypothesis.

Structural equation models (Bergan, 1980) were used to examine the positive

transfer hypothesis. The models employed in the research made use of a

modified path analysis technique developed by Goodman (1973). This technique

is outlined in Appendix C in conjunction with the description of latent class

techniques.

STUDY I

The first study conducted in the investigation was a psychometric

validation study addressing the domain, prerequisite ordering, and positive

effects hypotheses. Five algebra problem solving tasks each represented by

two identical items were used in the study. Two of the tasks involved the

solution of quadratic equations while the other three required the solution

of cubic equations. The task demands were varied both for the two quadratic

problems and for the three cubic problems. One of the quadratic problems

imposed greater search demands (Newell & Simon, 1972) on the problem solver

than the other. That is, the number of possible combinations of numbers that

had to be considered to arrive at a solution was greater for one problem than

for the other. The cubic equations incorporated similar variations so that

the three cubic problems were ordered in terms of search requirements.

It was hypothesized that the two quadratic tasks would form one domain

and that the three cubic tasks would form a second domain. Because of the

variations in task demands within domains, it was assumed that there would be

differences in task difficulty within domains. It was further assumed that

the two domains would be ordered hierarchically . That is, each of the tasks

in the quadratic domain would be prerequisitely ordered with respect to each

of the tasks in the cubic domain.
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Method

Sj ts. The subjects were 203 university students who were taking

introductory psychology courses and who volunteered to participate in the

invvstigation. There were approximately equal numbers of males and females

representing a wide range of educational backgrounds with respect to algebra

problem solving. Some had had many courses involving algebra skills.

Others had had only one introductory course in highschool.

Tasks. The item form approach (Hively, 1974, Hively, Patterson & Page,

1968) was used to select the two quadratic and three cubic equation problems

used in the study. The use of the item form technique ensured that each of

the problems selected would represent a woll-defined class of items. The

two quadratic tasks selected were: X2 + 6X + 5 = 0 and 3X2 + 3X - 18 = 0.

These were labeled Q and Q2' respectively. The roots representing

the solutions to these quations can be obtained by factoring. The first

quadratic can be factored into the expressions (X + 5)(X + 1) = 0. The second

can be factored into the expressions (3X + 9)(X - 2) = 0. Note that in the first

problem there is only one set of whole numbers that can be multiplied to-

gether to produce the 5 constituting the third term in the equation, namely

5 X 1 . On the other hand there are several ways to produce the -18

constituting the third term in the second equation (e.g., -6 x 3, -3 x 6,

9X - 2, -2 x 9). Many more combinations of numbers have to be considered

to factor Q2 than to factor Q V This illustrates the fact that the search

requirements attendant to solving Q2 are greater than the search requirements

associated with solving Q V

3 2 3 2
The three cubic equations were 4X - 20X + 20X = 0, 3X + 7X + 2X = 0,

and 24X 3 + 28X 2 + 8X = 0. These were labeled C1 , C2, C3 respectively. The

cubic equations varied in search requirements with C I being the least

demanding and C3 being the most demanding.
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Procedures. Two identical Problems, for each of the five above tasks,

were presented to the subjects together with forty-seven other algebra problems.

The problems were arranged in a single random sequence in test booklets. Pairs

of identical items were used to take into account inconsistency in responding.

The purpose of the other algebra tasks was two-fold. Since identical items

were used, the other algebra tasks served to reduce the likelihood of indi-

viduals remembering answers to problems they may have already completed. In

addition, the other tasks provided data for further research on the hieraichical

arrangement of math skills. All items were scored dichotomously, either

correct or incorrect. A correct answer was one in which all the roots to an

equation were identified by the subiects.

The administration of the test was carried out in groups ranging in size

from five to ten. The participants were told the purpose of the study and

instructed to solve for all possible values of X in the Problems. In addition,

the subjects were told to not look back at any previously done work. During

the course of the testing, the experimenter monitored the trainees' perfor-

mance to ensure that all the items were attempted by the subjects and that all

directions were being followed.

Results

The five latent class models described in the preceeding section were used

to test the domain hypothesis and prerequisite ordering hypothesis. Model

testing was conducted for all possible cross-classifications of quadratic and

cubic equations. The observed response patterns for these cross-classifications

are given in Table 10. Note the relatively large numbers of individuals in the

quadratic-cubic cross-classifications who passed both quadratic items and

failed both cubic items. This suggests a hierarchical ordering. Likewise, note

the extremely small number of individuals who respond correctly more

faldbt ui tm.Ti ugssa irrhclodrn. Lkwsnt
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often on a superordinate than a subordinate task. This suecests Drereniii-sit-

ness.

Table 11 presents the results of model testing for each of the cross-

classifications of quadratic and cubic equations. Asterisks indicate the

"preferred" model for each task set examined. Preferred models were arrived

at by mnaking statistical comparisons between the various models tested

(Bishop, Feinberg, & Holland, 1975; Goodman, 1974). The likelihood ratio

statistic was used in all the studies because it can be partitioned exactly.

For example, consider the chi-square tests for the Q1 - Q2 cross-classi-

ficatio displayed in Table 11. Model H1 yields an X2L of 29.07 with 12 degrees

of freedom. This model does not fit the data (p 4 .01). However, it is

hierarchically related (Goodman, 1974) to H 2 . That is, model H2 contains

all of the characteristics of H1 plus eight more reflecting the four partially

inconsistent latent classes of model H . Inclusion of these latent classes

reduces the available degrees of freedom by 8. Because they are hierarchical,

H and H can be compared statistically. The X2L of H2 can be subtracted from

the X2L for H The result is an X2L of 22.84 with 12 - 8 = 4 degrees of

freedom, which is significant well beyond the .001 level. Thus, model H2

improves significantly on Ifl and provides an adequate fit for the data.

The next step in the model comparison process would be to compare model

H2 with model 114 in order to examine the nature of the ordering relationship

between two tasks. Model H4 contains all the classes of 112 plus one additional

class reflecting ordering. Model H4 has three degrees of freedom. Model H4

and H3 are hierarchically related. The subtraction of the two X2LX L values
yields a X2L of .30 with 1 degree of freedom (p > .5) which is not significant.
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Since nodel 112 improves the fit over H1 and is a more parsimonious

representation of the data than offered under model H4 , it is a candidate for

adoption as the preferred model. However, before a final decision can be made,

it is necessary to consider H 3 . Model H3 fits the data adequately and is

hierarchically related to H Model H3 has two additional characteristics

imposed upon the latent classes that are common to models H2 and H These

restrictions are designed to represent tasks of the same difficulty level.

These two restrictions afford two additional degrces of freedom for model H3 .

The subtraction of the X2L for model H2 from the X
2L for H3 yields a X

2L of

1.58 with 2 degrees of freedom (p _> .5). Since H2 does not significantly im-

prove the fit afforded by H3, model H 3 is the preferred model.

The preferred models displayed in Table 2 demonstrated congruence with

the hypothesis advanced earlier. The data for the cross-classification of Q

and Q, was best fit under model H3* This suggested that Q1 and Q2 were in

the same domain and of equal difficulty. Although the quadratic items did

represent oae domain as hypothesized, it was expected that Q and Q2 would

exhibit some difference in difficulty given the hypothesized search require-

ments characteristic of Q and Q2 "

The model comparisons also revealed that a single domain existed for Cl,

C2, and C3. The preferred model for the Cl C2 task set was Hl, suggesting

that Cl and C2 were essentially one task for the individuals. The C2-C3

cross-classification was best fit under: model H This indicated that these

two items, although in the same domain, were different in difficulty level.

The comparison of Cl and C3 manifested a greater difference in difficulty
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level than found for the C2-C3 cross-classification. The preferred model was

H4 , indicating ordering but not prerequisiteness. Although Cl-C3 were repre-

sented by one domain, a significant ordering by difficulty relationship was

present.

The general structure to the cubic data was as hypothesized. One domain

was realized and the variations in task difficulty that were found were expected.

Cl, the least demanding of the cubic equations, was shown to be much less

difficult for subjects than C3, the most demanding of the three cubics. C2,

the moderately demanding task, was less difficult than C3. The only contrary

finding was the result that Cl and C2, two items with different amounts of

hypothesized search requirements, were essentially the same task for individuals.

The ccmparisons of the quadratics with the cubics suggested that with one

exception the quadratics and the cubics were in different domains. This was

illustrated through the cross-classifications of Q1-C2, Ql-Cl, QI-C3, Q2-C2,

and Q1-C3. ThP oreforred model for the task sets was H,, which suggested a

prerequisite relation between these items and a hierarchical relationship

between the quadratic and cubic domains. This was hypothesized to be the re-

lationship between these two general types of tasks.

However, some overlap between these two domains was identified. For the

comparison of Q2 and Cl, the preferred model was H2, which suggested that the

two items were not equally difficult but nonetheless in the same domain. This

indicated that the two domains were not entirely disassociated, but that sone

permeability between the two domains existed.

The last hypothesis tested examined the effects of subordinate skill

levels on the acquisition of superordinate skills. Goodman's (1973) modified

path analysis approach was used to assess positive effects for tasks representing

both the quadratic and the cubic domains. The Ql, C2, and C3 items were selected
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because tle tasks represented by these items were used in the instructional

validation of positive effects conducted in study 3. For the case of two

variables, the effect of subordinate competency on superordinate competency

can be tested by the usual chi-square test of independence (Fienberg, 1977).
2

The test of the effect of Q1 on C2 resulted in a X value of 72.47
L

with I degree of freedom (p = 0.00). In a similar test, the effect of Q1 on

C3 yielded a X2L value of 51.75 with 1 degree of freedom (p = 0.00). This

supports the hypothesis that Q1 competency does effect the competency level

achieved in C2 and C3.

Discussion

The results revealing the hierarchical ordering of quadratic and cubic

asks suggest that these tasks must differ in certain fundamental ways. There

are two important differences between the quadratic and cubic tasks. One is

that the cubic equations require the identification of three roots whereas the

quadratic equations call for the identification of only two roots. The second

is that each cubic equation requires as a first step that an X be factored from

the three term expression on the left side of the equation. Factoring is not

required in the quadratic case. Indeed, any attempt to factor an X in the case

of a quadratic problem would tend to make it impossible to solve the problem

(Bundy, Note 5; Carry, Lewis, & Bernard, Note 6). Thus, what was a required

initial step in the cubic case was an incorrect step in the quadratic case.

The results within domains contained unexpected findings. In particular,

the assumption that variations in search requirements would produce variations

in task difficulty within domains was supported only for the C1 - C3 , C2 - C3

task pairs. In all other cases the tasks under study within domains were

shown to reflect equal difficulty levels.

The within domain findings suggest that examinees were able to reduce the
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search demands associated with the various problems to an extent that mini-

mized variations in task difficulty. Search requirements for the problems could

be reduced in t-o ways One involved the use of the quadratic formula

-b+ b2 - 4ric . This formula eliminates the search process required in the
2a

factoring approach to the solution of the equations. An informal analysis of

examinee protocols revealed that a small number of examinees did use the quadratic

formula to good advantage. However, the vast majority used the factoring approach.

The observed preference for factoring is consistent with findings reported by

Carry, Lewis and Bernard (Note 6). Those who attempted to factor the left

sides of the equations, for example, into expressions such as 3(X + 3)(X - 2) = 0

could reduce search requirements by such means as initially factoring a number

from the three terms in the left side of the equation. This type of strategy

was used by the vast majority of examinees who were successful in solving the

problems.

It was anticipated that examinees would use different strategies to reduce

search requirements in the problems. What was not expected is that for the most

part they would be equally effective in applying the appropriate strategies to

the various problems. Yet, with the exception of the C3 problem, this was the

case.

Although the tasks within domains tended to be of equal difficulty, for

the most part the items did not form an equivalence class of the sort that

might be expected under the learning hierarchy model. Model H asserting

equivalence among items fit the data for only one task set, C- C The

analyses for all of the other task pairs supported the assumption that each

task formed a subclass within the domain to which it belonged. Tasks C1 and C2

are not apparently any more similar than any other of the task pairs, and it is

not certain why they should be rell represented by model H1 when H was not

preferred for the other task pairs.



The results for the structural analysis examining the positive effects

hypothesis require brief comment. Given the existence of two domains, the

finding the Q affected both C2 and C3 is exactly what should be expected. By

contras"t if C2 and C3 were in two separate hierarchically ordered domains,

there should have been no direct effect of Q1 on C3 (Bergan, 1980 ). Rather,

QI would exert its influence on C3 indirectly through its effects on C2.

STUDY 2

Study 2 was an instructional validation study designed to examine the domain

hypotheses. The major purpose of the study was to determine the congruence of

psychometric and instructicnal validation findings with respect to the domain

memberhips of quadratic and cubic tasks.

The domain hypothesis takes on a somewhat different meaning under the

instructional validation paradigm than it has under the psychometric paradigm.

In the psychometric validation case, tasks may be said to be in the same domiAn

if data can be adequately represented by mastery, nonmastery and transition

latent classes, each of which is characterized by a certain type of response

pattern. The same latent classes may be used in domain validation under instruc-

tional conditions, but they may take on a different interpretation in the in-

structional validation case. More specifically, some of the latent classes in-

dicate generalization under the instructional paradigm whereas they do not nece-

ssarily imply general; ation under the psychometric paradigm. For example,

consider the case in which a group of individuals is trained on quadratic task

I and then tested on that task and quadratic task II. Under these conditions

the mastery class represented by correct performance on both tasks indicates a

group-of individuals who have generalized task I skill to task II. Under psy-

chometric validation conditions mastery indicates merely that there is a group of

individuals who respond correctly on both tasks.

A
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It is not just the mastery class that implies generalization under an

instructional validation paradigm. Each of the various possible transition

classes also implies a degree of generalization. It is only the nonmastery class

that signifies a lack of generalization.

The process of determining the congruence between psychometric and instructional

valii-Ittion can be conceptualized as an investigation of whether or not models

jrepresenting the tendency to respond in the same way on different tasks are

congruent with findings for models representing generalization across tasks.

In the process of determining the congruence of psychometric and instructional

techniques, study 2 investigated generalization within the quadratic and cubic

domains identified in study 1. It examined the question of whether or not

individuals trained on one set of Q1 problems would generalize what they had

learned to other QI problems and to Q2 problems. Likewise, it investigated

the extent to which individuals trained on a set of Q2 problems would generalize

their learning to other Q2 problems and to Q1 problems. It examined the

generalization issue in an analogous fashion for the C1 and C2 tasks from the

cubic domain.

The issue of generalization is of interest not only within domains, but

also between hierarchically ordered domains. Insofar as hierarchical ordering

implies the existence of a class of individuals who are masters of the skills

in the sub Oldinate domain and nonmasters of the skills in the superordinate

domain, it is reasonable to assume that generalization from a subordinate

domain task to a superordinate domain task should be minimal. However,

generalization should be substantial from a superordinate task to a subordinate

task. Gagne (1973) has hypothesized that an individual who learns a super-

ordinate skill without having received instruction in the related skill will

in the course of mastering the superodinate skill acquire the prerequisite
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skill. This hypothesis implies downward generalization from the superordinate

skill to the subordinate skill. Cotton, Gallagher and Marshal (1977) discuss

this type of downward generalization and point out that it has not been

studied.

Study 2 examined both upward and downward generalization between the

quadratic and cubic domains identified in Study 1. It investigated the extent

to which individuals trained on 0 or Q2 problems generalized to C, and C2

I problems and it examined the extent to which individuals trained on C or C2

problems generalized to Q and Q2 problems.

Method

Subj ects. The subjects were 325 volunteers from the University of Arizona

enrolled in an Introductory to Educational Psychology class who represented

a wide range of skill levels insolving algebra problems.

Tasks. Two tasks from the quadratic domain (Q1 and Q2 ) and two tasks from

the cubic domain (C1 and C2 ) were used in the study. All items were generated

using the item forms and item form shells used in Study 1. Different items

were generated for each training phase and each testing phase of the study.

Procedures. A pretest was first given to the 325 volunteers in groups of

approximately twenty in size. It consisted of two problems for each of the above

four tasks in a random sequence. Identical problems were not used because only

eight problems were presented to the subjects. However, the pairs of items

were isomorphic since they were generated from the same item forms and item form

shells. The administration of the pretest involved the same directions and

monitoring activities used in Study 1. Since Study 2 was to involve instruction

in th,- f' ;l ';e math problems, it was necessary to identify those trainees
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who could not correctly solve any of the problems on the pretest. Failing a

problem was defined as not correctly solving for all of the values of X in the

equation. Of the 325 volunteers, 246 met the criterion of failing all the

items on the oretest. Those who qualified for the training portion of the

study were randomly assigned to one of four training conditions involving

instruction in Q1I Q2, Cl, and C2 '

Training involved presenting the subjects with a problem and then modeling

feedback demonstrating a sequence of steps leading to problem solution. The

demonstration included verbal descriptions of rules and strategies applied in

the problem solving. The rules and strategies included determing the number

of roots, factoring and eliminating common elements, simplifying equations

into factored expressions, obtaining roots, and finally checking the roots.

These steps are illustrated in Table 12, however, in a more abbreviated form

than used in the study. Both the problems and the demonstration feedback

were presented in written form in a manner analogous to that used in programmed

instruction. The training materials used in Studies 2 and 3 are provided in

Appendix B.

Three trials were given. The amount of feedback was reduced systematically

over the three trials. On trial 1, feedback included detailed illustrations

of all operations used in achieving a problem solution. On trial 2, some of

the operations required to carry out a particular step in problem solving were

not spelled out. Specifically, the steps required to factor the equation into

expressions were reduced in trial 2. Trial 3 feedback contained only a

sequence of equations. No verbal descriptions of steps were included. Table 13

illustrates a portion of the type of feedback provided during each of the three

trials.

L ___ _
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To attain a correct score, all solutions to an equation had to be identified

by an individual.

Results

The five latent class models used in Study 1 were employed to examine the

con.7rence of instructionally validited and psychometrically validated domains.

As in Stud" 1, stitistic:l comparisons were made between models to arrive at

a preferred model. The model testing was conducted for only those cross classi-

fications of the quadratics and cubics that involved the specific task on which

subjects were trained. For example, for those subjects trained in Q,, only the

comparisons of Q1- Q2 ' Q, - Cl, and Q, - C2 were made.

The observed response patterns for all the various cross-classifications of

tasks are given in Table 14. The cross-classifications for the groups trained

in the two quadratic tasks suggest a hierarchical ordering between the quadratic

and cubic tasks. This is evidenced by the large numbcr of subjects who passed

both quadratic items but failed both cubic items. A prerequisite relationship

is further indicated by the extremely small number of trainees responding

correctly more on the superordinate task than the subordinate task. This finding

is highlighted by the very small numbers representing mastery of both the

quadratcis and cubics following training in Q1 or Q2 "

On the other hand, for those subjects trained in C1 or C2, there were

significantly more trainees who mastered both the quadratic and cubic items.

This suggests downward generalization from the cubic task to the quadratic task.

It is apparent that the mastery and nonmastery cells in the table, the 1111 cell

and the 2222 cell , account for the vast majority of the subjects' responses.

This suggests that trainees who learned the cubic task also learned how to

solve the quadratic tasks. Few subjects actually learned the cubic task and

failed the quadratic task when trained in C 1 or C2.
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The results of the model testing are presented in Table 15. In the case of

subjects trained in Q, or Q2 the quadratic items were found to prerequisitely

ordered with the cubic items. Model 11, indicating prerequisit ordering, was

the preferred model for the Q1 -C, Q1- C2 , Q2-C Cl and Q2- C2 task sets.

The analys:- for tih: Q1- Q2 task set for these same training groups indicated

that Q1 and Q2 were of the same domain. For subjects trained in Q2, the pre-

ferred model was HI, a model suggesting that Q and Q2 were essentially the same

task for individuals. The preferred model for the Q1- Q2 cross-classifications

of the group trained in Q, was H M odel H2 offered the interpretation that

although the two items were in the same domain they were not equally difficult.

The Q, and Q2 training conditiops afforded the opportunity to examine

upward generalization. Upward generalization did not occur. This is apparent

from the observed response patterns. No statistical test was needed to verify

the lack of generalization. In cases of training under either Q, or Q2 there

were never more than two people who responded correctly to a cubic item.

The cubic items, like the quadratic items, were shown to be in the same

domain. This is indicated by the C-2 C1 analyses for subjects trained in either

C1 or C 2 * The preferred model for both groups was 112, a model suggesting the

existence of a single domain with items which were of different difficulty

levels.

Training under C1 and C2 afforded the opportunity to examine downward

generalization. The analysis for the various cross-classifications of cubic

and quadratic tasks indicated that such generalization did occur. However, it

did not occur in the same way under C2 training as it did under C training.

For subjects trained in C1 problems, model H1 indicating task equivalence

was preferred. This suggestedthat if C1 was learned, Q1 and Q2 were also

learned and if C was not learned, Q1 and Q2 were not learned.

1°
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By contrast, for subjects trained under C2, 114 indicating an ordered relation

was the preferred model. This indicated that when C2 was learned, Q 1 and Q2

were also learned. Hov;ever, it also suggested that C2 training had a beneficial

2'2effec:t on 0'1 an,, 2 learninc, ev.'n w,.hen C2 was not learned.

Discussion

The results for this study support the general hypothesis that domains

validated psychometrically can be expected to be congruent with domains validated

instructionally. The analyses for both quadratic equations and cubic equations

revealed complete congruence in domain assignment. These results support the

assumption that domain membership determined psychometrically is congruent

with generalization of skills occurring in the course of skill learning.

The occurrence of generalization has instructional significance in that it

indicates that instructors may provide instruction in one skill in a skill domain

and anticipate that a significant number of learners will generalize that

skill to the performance of other skills in the domain.

The occurrence of generalization is both a desired and an expected outcome

in educational environments, and it is not surprising that it occurred. What

is particularly important to point out is that psychometrically validated

domains were useful in predicting the extent of occurrence of generalization.

Instruction in the quadratic domain produced generalization within that

domain. Yet, there was no generalization to the cubic domain. By contrast,

as predictedirstruction in the cubic domain produced downward generalization

to quadratic tasks. As these results show, the trainee who can master a

superordinate task without receiving instruction in the subordinate task

derives a double benefit. Congruent with Gagn 's (1973) expectations, the

trainee may acquire not only the superordinate skill but also the subordinate
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skill as a result of receiving superordinate skill instructions. A corrolary

to this result is that even though a learner may-ftot master the superordinate

skill, superordinate skill instruction may eventuate in subordinate skill

mastery. This state of affairs occurred in the case of trainees ; who

received in3truction on C2 problems. le preferred model for both the QI-C2

and Q2 -C2 task sets given C2 training was H5 indicating prerequisite ordering.

Model H5 includes a class of individuals who are nonmasters of the superodinate

skill and i;:asters of the subordinate skill indicating that some learners

mastered Q, and Q2 tasks while being nonmasters of C 2 under instruction in

C2 tasks.

The above generalization findings suggest the advisability of targeting

instruction markedly ahead of the learner's current level of skill rather than

following the well accepted maximum of taking the learner from his/her current

level in a step by step fashion to higher levels of achievement. Presumably,

there is some limit to how far ahead one can skip before reaching a situation

in which little or no learning occurs. The feasibility of shipping domains

may also vary based on the individual characteristics of learners. Factors

affecting learning when subordinate domains are skipped is a topic in need of

much research.

Although the findings for Study 2 were generally congruent with the findings

reported for Study 1, there were some interesting differences between Study 1

and Study 2 results. In the case of the two quadratic items under psychometric

validation, model I13 was preferred, indicating separate tasks of equal difficulty.

Under instructional validation, the preferred model for the Q1 - Q2 task set was

H 1 under Q2 training and 112 under Q1 training. This indicated that when training

was provided for Ql, the task hypothesized to be the least difficult, Q 2,was shown

to be more difficult than Q V On the other hand, when training was provided for
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the more difficult Q, task, the two tasks were shown to he equivalent. This

suggests complete downward generalization and partial upward generalization within

the quadratic domain.

For the cubic domain, the results were somewhat different. Under psycho-

metric validation model H Iwas prcferred for the C - C2 task set. However, under

inst'-.c --.CT-l Valid-t on7, H was prefer-red under both C1 and C2 training. Thus,

training on the most difficult task did not produce task equivalence (i.e. complete

do wn:ard generalization) in the cubic domain as it did in the quadratic domain.

There are differences in task relations for the cubic and quadratic domains

that could account for the lack of congruence in downward generalization for the

quadratic and cubic domains. In the case of the quadratic domain factoring a

nundber from the expression on the left side of the equation in a Q2 problem led to

an expression identical to the left side of a Q1 problem. Thus, a Q2 problem

could be described as being exactly the same as a Q1 problem except that it required

an "dditional step. This was not the case for the cubic problems. Problems of

the C2 type could not be related to C1 problems by performing an additional step.

Thus, it is not too surprising that the cubic problems varied in difficulty

regardless of whether training occurred under C1 or C2.

The fact that quadratic and cubic problems varied in difficulty under instruc-

tional validation, but not under psychometric validation, requires comment. The

psychometric validation study reflected students development of algebra problem

solving skills over a long tine span. In the course of development, trainees

have the opportunity to acquire a large repertory of problem solving strategies.

By contrast, under instructional validation conditions the opportunities for

strategy acquisition are necessarily limited. The range of problems to which

trainees car be exposed is small and the time allotted for constructive thought

about the problems presented is minimal. Thus, it is reasonable that differences
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in task difficulty will appear to be more pronounced under instructional

validation than under psychometric validation.

A final discrepant result between the psychometric and instructional

validation that calls for discussion involves domain permeability. Permea-

bility occurred under psychometric validation, but not under instructional

validation. This may have happened for the same reason as that advanced with

respect to the discrepant findings discussed in the last paragraph. Differences

in task difficulty may be more pronounced under instructional validation than

under psychometric validation.

STUDY 3

Study 3 was an instructional validation study. One purpose of the investi-

gation was to determine the congruence of psychometrically validated and in-

structionally validated prerequisite orderings. As indicated earlier, pre-

vious research (Ga5ne & Bassler, 1963; White, 1976; White & Gagne, 1978) raised

the question of whether or not psychometrically validated hierarchies can be

expected to yield results congruent with instructionally validated hierarchies.

A related question had to do with whether or not skills may be forgotten in

a different order than the order in which they are learned. Study 3 investi-

gated both of these questions.

A second purpose of the investigation was to determine the congruence of

positive effects established psychometrically and positive effects established

instructionally. This involved determining whether or not the same structural

model was preferred under instructional validation as under psychometric

validation.

A third goal of the study was to determine the nature of positive effects

validated under instructional conditions. The meaning of the positive effects

hypothesis may be different under psychometric and instructional validation
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procedures. In the case of psychometric validation, to say that skill Q

has a positive effect on skill C2 implies that skill Q has a causal influence

on skill C2. Three conditions have been advanced as necessary for hypothesizing

a causal relation in the structural equation literature (Bergan, in press;

Heise, 1975). One is a theoretical justification for the hypohtesized causal

relation. The second is assurance that the causal variable occurs in time either

prior to or simultaneously with the variable that it is assumed to effect and

the third is empirical evidence of a relationship between the two variables.

Psychometric validation can satisfy these three conditions. An appropriate

theoretical model can be provided asserting a causal effect between skills.

Validation of prerequisite ordering can assure that the causal variable occurs

before or simultaneously with the variable that it is presumed to effect.

Finally, application of structural equation techniques can determine the exis-

tence of a relationship between the variables of interest.

Although the psychometric technique satisfies the conditions for determing

of causal relation, there remains some ambiguity in the interpretation of the

term effect under the psychometric validation approach. In particular to say

that one skill affects another under psychometric validation may imply that

mastery of the first skill influences the performance of the second skill in

the absence of training with respect to the second skill or it may mean that

mastery of the first skill influences the learning of the second skill. The

former of these cases implies generalization whereas the latter implies trans-

fer. Instructional validation also may involve generalization or transfer.

11o,.ever, in the case of instructional validation, it is possible to separate

generalization effects from transfer effects.

Study 3 examined the question of whether or not a positive effect of a

suoCrdiiaLc kill on a superordinate skill implied generalization or transfer

or both. In addition , it looked at the question of whether or not a lower order
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model. It is apparent that the prerequisite relations discovered in Study 1

were validated instructionally.

The findings from the test taken one week later are also presented in

Table 15. The chi squares and the preferred model for the two quadratic and

cubic cross-classifications indicate that the prerequisite relations between

these two tasks was not lost. Quadritic and 'uhic tasks form two hierarchic-

ally ordered domains. The one anomaly that occurred in this study resulted

from the analysis of C2 and C3 on the retention test. From Table 14, this

cross-classification suggested that C2 and C3 were hierarchically arranged in

two domains. This is indicated by the preferred model P5 .-5

Two path analyses were conducted. The first examined generalization and

transfer effects involving Q1 and C2 skills. The Q skill was examined immediate-

ly following Q1 training. By contrast, the C2 skill was studied at two points in

time. Time 1 occurred immediately after Q1 training and time 2 followed C2
training. The analysis also examined the generalization ofQ to C at time 1 and

genealiatioof. 2

the generalization of C2 at time 1 to C2 at time 2. Generalization was studied

to facilitate the separation of generalization effects from transfer

effects. The association between Q, and C2 can be conceived of in terms of two

components, a generalization component and a transfer component. In the path

analysis the transfer component was represented by the direct effect of Q, on

C2 at time 2. The generalization component was represented by the indirect effect

of Q1 on C2 at time 2. This indirect effect was composed of the direct effect of

Q on C2 at time 1 and the direct effect of C2 at time I on C2 at time 2.

Table 16 summarizes the model testing for the first path analysis. The
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equations shown in the table indicate the effects represented under each model.

The first four models deal with effects on C2 assessed at time 2. The equation

for Hi indicates that the natural logarithm of the odds of a passing as opposed

to a failing response on the C2 item at time 2 is a function only of a parameter

representing the general mean of the log odds for the C2 item. Thus, H asserts

no effects on C.. The equation for H2 represents the log odds for C2 at time 2

as a function of the general mean and the main effect for QI" Thus, H2 asserts

that Q1 affects C2 at time 2. The equation for model 113 asserts that C2 at time 1

affects C2 at time 2. Thus, H3 represents generalization of C2 at time I to C2

at time 2. The equation for 114 asserts that Q, affects both C2 at time 1 and C2

at time 2 and that C2 at time I affects C2 at time 2.

The four models in Table l6are hierarchical. Models 112 and H3 are hierar-

chical with respect to H1 and H4 is hierarchical with respect to Hl, H2, and H3.

Statistical comparisons for the models eventuated in the selection of H4 as the

preferred model. This model asserts that Q, affects C2 at time 2 and C2 at time 1

affects C2 at time 2. Thus, model H4 supports the occurrence of transfer from

Q1 to C2 at time 2 and generalization from C2 at time 1 to C2 at time 2.

Although generalization did occur, it cannot be linked directly to the

learnine of Q Model H5 asserts independence between Q and C2 at time 1. This

model indicates no effect of Q1 on C2 at time 1. Thus, Q, learning cannot be

regarded as responsible for performance at time 1. The observed lack of generaliza-

tion from the subordinate task Q in the cuadratic domain to the superordinate task

C2 in the cubic domain- is consistent with the findings reported in Study 2.

The second path analysis examined generalization and transfer effects for tasks

C2 and C3 . Both task C2 and task C3 were assessed after C2 training at time 2.

In tN d after C3 training at time 3.

The second analysis examined transfer represented by the direct effect of
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C2 at Lime 2 on C3 at time 3 and generalization represented by the indirect

effect of C2 at time 2 on C3 at time 3. This indirect effect was reflected in

the direct effect of C2 at time 2 on C3 at time 2 and the direct effect of C3

at time 2 on C3 at time 3.

Results of the second analysis are shown in Table 17. The five models tested

j are the same models examined in the first analysis. As in the first analysis,

model H 4 was preferred. However, in contrast to the first analysis, model H5

did not afford an acceptable fit for the data. This means that the hypothesis

that at time 2 C2 and C were independent had to be rejected. The results
2 3

support the assumption that C2 generalized to C3 at time 2. Accordingly, the

preferred model indicated transfer from C2 at time 2 to C 3at time 3 and

generalization in the form of an indirect effect of C2 at time 2 on C3 at time

3. This indirect effect involved generalization from C2 at time 2 to C3 at

time 2 generalization from C2 at time 2 to C3 at time 3.

Discussion

The results of Study 3 support the hypothesis that prerequisitely ordered

relations validated psychometrically will be congruent with prerequisitely

ordered relations validated instructionally. The prerequisite ordering of Q

and C2 and Q, and C3 were maintained at each training phase of the study.

Furthermore, the results afford no support for the differential forgetting

hypothesis. Prerequisite ordering prevailed for the QI - C2 and Q1 - C3 task

sets during retention as it did during the training phases of the study. How-

ever, from the response patterns for the retention data in Table 14 it seems

that forgetting occurred,but mainly for transitional individuals. The trainees

in transition for the C,) - C. cross-classification on the test following

I
II

A
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C2 and C3 instruction shifted to nonmastery classification on the retention

test. Thus, forgetting occurred in the order in which learning occurred.

The results also provided support for the congruence of the positive

effects hypothesis under psychometric and instructional validation conditions.

There was a strong relationship between each of the quadratic and cubic domain

items examined under the psychometric and the instructional approach.

The examination of generalization and transfer within and between domains

provided information about how positive effects occur in hierarchical sequences.

The present results indicate that positive effects between domains result from

transfer. As Gagne (1977) suggested, mastery of a subordinate skill can facili-

tate the learning of a superordinate skill. By contrast, the results within

domains indicate that positive effects can occur both as a result of generalization

and transfer.

The fact that transfer taskes place between hierarchically ordered domains

inricates that providing instruction in a subordinate skill can be beneficial.

Nonetheless as pointed out in the discussion of study 2 there are advantages

to initiating instruction at a superordinate level as opposed to a subordinate

level. When instruction can be initiated at the superordinate level, downward

generalization can occur. If trainees fail to profit from superordinate

instruction, subordinate instruction may be provided with the expectation that

transfer will occur.

In the case of within domain instruction, the present results also favor

initiating instruction at the top of the domain. As the results of Study 2

show, downward generalization can occur within a domain. Nonetheless, if the

individual, for any reason, cannot profit from instruction initiated at the

higher levels in a domain, then instruction may be initiated at a lower level

with the expectation that both generalization and transfer will occur.

Aa
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Conclusion

The psychometric and instructional validation studies reported above have

a number of implications regarding the advancement of knowledge about hierarchi-

cal sequences. The present findings provided empirical support for the idea

of hierarchically ordered domain structures as opposed to the idea of hierarchi-

cally ordered tasks. The notion of dom:ain structures raises new questions about

generalization and transfer within hierarchical sequences. Whereas in the

learning hierarchy model the major focus of research was on positive transfer

between hierarchically ordered tasks, in the domain structure model the

focus is on generalization and transfer both within and between domains.

The inLructional validation findings reported here support the view

that generalization and transfer may occur within domains. In addition they

indicated that downward generalization and upward transfer may occur between

domains. However, they failed to provide support for the assumption that

upward generalization may occur between hierarchically ordered domains.

The findings regarding generalization and transfer within and between

domains have important implications for training. Specifically, they suggest

the desirability of targeting training ahead of the trainee's current level

of functioning rather than at the current level of functioning. For many

learners, training may profitably begin at the highest level in a domain

rather than the lowest. Moreover, training may be initiated to advantage in

a superordinate rather than a subordinate domain.

The findings on generalization and transfer suggest a learning process

making use of something like the phenomena of top-down and bottom-up processing

(see, for example, Anderson, 1980). By starting at a more advanced level

than the level of current functioning, the individual is afforded the opportunity
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of conceptualizing simple problems as special cases of complex problems (top-

down processing). The capability to accomplish this is apparent in the downward

generalization that was observed to occur in the instructional validation

stuides. By contrast, when instruction is initiated in a subordinate domain,

top-down processing does not occur. The familiar problem of not being able to

see the forest for the trees is revealed as evidenced by the absence of upward

generalization.

As indicated earlier, there are undoubtedly limits with respect to how far

ahead one can skip in a domain structure. As a consequence, progress through a

hierarchical sequence may be thought of as combining bottom-up and top-down

processing. In all likelihood the trainee uses top-down processing to

acquire skills representing a subset of domains and then uses bottom-up

processing to progress to a higher level subset of domains. As suggested

previously, the determination of those factors affecting the degree to which

skipping ahead is feasible represents a high research priority.

The present reserach has implications with respect to reserach strategies

regarding hierarchical sequences as well as with regard to the advancement of

knowledge about such sequences. As implied at the beginning of this article,

although the notion of hierarchical sequences has been widely accepted for a

long time, little is known about the hierarchical structure of knowledge. There

is an obvious need for a rapid increase in information about the structure of

knowledge in such areas as academic subject matter fields and technical

specialties. The findings of the present research indicating the congruence of

results for psychometric and instructional validation studies suggest the

feasibility of employing the psychometric validation approach as a tool for

gaining information about kowledge structures in a rapid and efficient manner.
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One possible way to increase information about knowledge structures

dramatically would be to link psychometric validation to test development.

Bergan (in press) has suggested the need for a new kind of assessment that would

reference examinee performance to position in a set of paths defining a know-

ledge structure. The present research suggests that path referencing would have

the advantage of providing information that could be used to make predictions

regarding generalization and transfer in hierarchical domain structures of the

sort that might be used in instruction. Psychometric validation used for pur-

poses of test development could provide the basis for hypotheses to be investi-

gated using instructional validation techniques. The instructional studies in

turn could provide information regarding the validity of domain structures

determined psychometrically.

I
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Table 1

Sample Problems From Hypothesized Domains'

Doarnain Probl1 es

Term Transposition X/A =B

X +A + B = C

Distributive Property N(X+R) = Z
* A('X+B) = D

C

Factoring NX + RX =Y

(NX + RX)Y =Z

I In each case the task vas to solve for *X.
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Table 2

Cross-Classification of Two

Hlypothes ized Tasks

J Task B

12 '3
Task AI

2 _ 1_
3._ _1__
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Table 3

1
Mlodels Used in Establishing Item Domains

0 H1  2H

B B B B

1 2 3 1 2 3 1 2 3 1 2 3

1 E E I IE 1 X I 1 1 x I I

A 2 E E I A 2 II I

3 E E 3 E 3 3 1 x

H3  11 ' H4  H5

B B B B

1 2 3 1 2 3 1 2 3 1 2 3

1 X I I 1lx I 1 1 x I 1 1 X I I

A 2 I X I A 21 X I A 2 X I I A 2 1I I

3 E E X 3 1 I1 3 E E X 3 x x x

1. The E's connected by curved lines indicate cells constrained to be

equiprobable. The I's indicate cells for which the hypothesis of

independence prevails. The X's indicate cells reflecting response

patterns associated with specific latent classes.
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Table 4

Observed Cross-Cla-4sificatioas for the Term-

.1
Tran5position Domain

Res cns- ? at terns Cross-Classifications

Ta sk s

A B A1- tl A1- A2 Al -M12 Ml - A2 -:1 M2 A2- H2I
1 1 65 72 69 82 99 97

1 2 4 2 2 12 2 22

1 3 6 1 4 9 2 if

2 1 14 22 28 14 16 6

2 2 12 12 4 11 10 10

2 3 12 4 6 8 9 10

3 1 24 19 38 17 20 10

3 2 19 40 20 29 14 22

3 3 161 145 146 133 )45 324

I. The letters in the letter-number combinations labeling the columns below,

the cross-classifications heading indicate addition-subtraction (A) or

multiplication-divison (1) problems. The numbers refer to the number of

step3 required for problem solution.
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Table 8 (conLinued)

Response Patterns Cro,;s-clasifications

Ta S S

A 11 "2-D3 A2-D4 A2-r5 A2 - -2 A2-F3 A24 2-F5

1 1 107 Iil 112 101. 106 105 107

1 2 3 1 0 5 1 1 2

1 3 3 1 1 7 6 6 4

2 1 32 40 44 33 36 41 42

2 2 11 9 5 12 7 4 2

2 3 11 5 5 9 11 9 10

3 1 31 43 55 29 34 44 53

3 2 20 12 38 14 11 16 7

3 3 99 95 57 107 105 90 90

Tasks
A B !2-D-D 4  Af2-D5  i2-F 2  112-F 3  N'2 -F 4  12-F 5

1 1 128 134 133 126 131 133 134

1 2 2 1 2 5 2 1 1

1 3 5 0 0 4 2 1 0

2 1 15 19 21 14 15 15 17

2 2 2 3 2 4 3 2 2

2 3 9 4 3 8 8 9 7

3 1 27 41 57 23 30 43 51

3 2 30 18 39 22 14 18 8

3 3 99 97 60 ill 112 95 97
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Table 10

Contingency Table for Study 1

Response Cross-Classifications
Patterns*

.-4 .-4 .-4 -4 ClN ' C~4 %0 0 r
Tasks a a a a a a a a

A B C D ;1j ;0 o ; ;1 ;0 ;
- a a a a a ae a a v

1 1 1 1 75 49 50 45 45 50 39 42 38 35

2 1 1 1 3 3 3 2 2 Z 2 2 3 9

1 2 1 1 4 2 1 1 6 4 6 7 4 2

2 2 1 1 5 1 3 0 2 1 1 6 3 2

11 2 1 6 4 10 5 5 8 6 7 2 2

2 1 2 1 2 1 0 1 0 1 0 2 0 1

1 2 2 1 0 0 0 0 1 2 0 1 3 1

2 2 2 1 0 2 1 0 1 0 0 1 1 2

1 1 1 2 12 13 7 5 11 7 6 3 4 6

2 1 1 2 2 1 1 1 1 0 1 3 2 1

1 2 1 2 1 0 1 0 3 0 1 2 2 1

2 2 1 2 1 1 2 2 0 4 8 3 0 0

1 1 2 2 4 31 30 42 86 22 36 3 11 14

2 1 2 2 0 2 3 3 5 5 5 0 2 0

1 2 2 2 5 8 8 9 6 10 9 5 6 7

2 2 2 2 83 85 83 87 89 87 91 116 122 120

1 denotes correct response

2 denotes incorrect response

2 deotesincrrec resons
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Table 11

Chi Square Tests for Study I

H1  H2  H3  H4  H5

Cross 2 2 2 2 2

Classifications X df p X df p X df p X df p XL df p

QI-Q2 29.07 12 x.01 6.23 4 <.25 8.81* 6 .25 6.53 3 <.1 11.33 7 <.25

Q1 -C 2  180.84 12 4.01 17.58 4 <.01 63.83 6 '.01 2.49 3 <.5 5.62* 7 4.75

Q1-C1  159.48 12 <.01 12.68 4 c.01 54.67 6 4.01 3.22 3 <.5 7.13* 7 4.5

QIC 306.49 12 <.01 36.37 4 <.01 107.81 6 4.01 4.20 3 <.25 8.11* 7 4.5

Q2-C2 121.1 12 4.01 13.88 4 <.01 48.69 6 -.01 5.56 3 '.25 7.08* 7 (.5

Q2-C 96.36 12 <.01 7.7* 4 '.25 38.52 6 <.01 4.84 3 1.25 14.98 7 <.05

Q2 -C 3  219.93 12 <.01 22.56 4 <.01 79.31 6 <.01 2.79 3 <.5 5.72* 7 <.75

C-C 1  16.70* 12 <.05 4.01 4 <.5 4.17 6 <.75 4.49 3 -.25 12.51 7 <.I
2- 1

C 2-C 3  33.6 12 <.01 8.57* 4 <.1 17.71 6 <.01 4.82 3 <.25 5.41 7 4.75

Q1 -C3  63.31 12 <.01 8.70 4 <.I 19.39 6 <.01 1.05* 3 <.75 14.39 7 4.05

Preferred model denoted by an asterick
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Table 12

An Example of the Feedback for the 3 Trials*

Trial 1

X2 +X- =0

1 2"3 4
Step 3: Simplifying (X )(X )= 0 Put in locations 1 and 3 factors of
the equation the 1st term (X2) of the equation.

* 1 23 4

* (X 3)(X 2) = 0 Put in locations 2 and 4 factors of
the 3rd term (-6) of the equation.

(X + 3)(X - 2) = 0 Between these locations go plus or minus

signs. Remember, you need to get a
combination of factors and signs that
cross-multiply to equal the equation
you're solving.

1 2 3 41
(X + 3)(X - 2) = 0 To cross multiply: Multiply the elements

in locations 1 and 3, 1 and 4, 2 and 3,
and 2 and 4.

X2 + X - 6 = 0 Collect terms and check to see if the
result is the same as the equation.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - - - - - - - - - - - - - - - - - - - - - - -

Trial 2

X 2 + 5 +4= 0
1 2 3 4

Step : Simplifying (X + 5)(X - 1) = 0 Put in loca~tions I and 3 factors of the
the equation ist term (X ) of the equation at the end

, of step 2, and in location 2 and 4, put
factors of the 3rd term (5). Between
these put signs.

1 2 3 4
(X + 5)(X - 1) = 0- Now cross multiply to check and see if

the two expressions are the ones you want.
To cross multiply: Add together the four
products obtained from multiplying the
terms in 1 and 3, 1 and 4, 2 and 3, and
2 and 4.

X2 + 4X - 5 = 0 Now collect terms and check to see if the
result equals the equation at the end of
step 2. 4

Trial 3
. X2

, + 3X - 4 = 0

Step 3: (X + 4)()x - 1) = 0
Simplifying the
equation.

*The dots ( i) signify that other steps, equations, and descriptions occurred before
in between, and after what has been speicifcally illustrated.
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Table 13

Types of Rules and Strategies Supplied During

Instruction

Step 1 Determining the 3X2 + 9X - 12 = 0 The highest exponent in the
Number of roots equation is a 2, therefore, there

are two roots.

_Step 2 Factoring and 3(X2 + 3X - 4) =0 A three can be factored out and

eliminating common X2 + 3X - 4 = 0 eliminated from the equation.
elements

Step 3 Simplifying the (X + 4)(X - 1) = 0 These are the two factored expe
equation expressions which equal

X2 + 3X - 4 = 0

Step 4 Obtain roots X + 4 = 0, X -4 The roots are -4 and 1.
X - 1 =0, X= 1

2
Step S Check solution 3(-4) 9(-4)-12 0

48 - 48 = 0

2
3(1) + 9(1) - 12 A 0 -4 and 1, when substituted into the

12 - 12 = 0 equation, both set the equation
equal to 0.
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Table 14

Contingency Tables for Study 2

Response Cross Clas- Cross Clas- Cross Clas- Cross Clas-
Patterns* sifications sifications sifications sifications

for Train- for Train- for Train- for Train-
ing in ing in Q2 ing in Q7 ing in Q6

Tasks BB' O 0 r_ no r . n

A A' B B' AA' " 0 Cj 0 0 0 0 n n

11 11 12 1 1 20 1 2 11 13 8 1s 10 10

2 1 11 0 0 0 2 0 0 2 0 1 1 2 0

1 2 1 1 0 0 0 0 0 0 2 1 0 1 5 0

2211 0 0 0 1 0 0 4 5 10 3 3 0

1 1 2 1 2 0 0 4 0 0 1 0 0 0 0 0

2 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0

1 2 2 1 1 0 0 1 0 0 0 1 0 0 0 0

2 2 2 1 0 0 0 0 0 0 0 1 0 0 0

1 1 1 2 7 0 1 2 0 0 1 2 1 0 0 6

2 1 1 2 1 0 0 0 0 0 1 2 0 0 0 0

1 2 1 2 0 0 0 0 0 0 1 0 0 0 0 0

2 2 1 2 1 0 0 2 0 0 2 1 4 2 2 0

1 1 2 2 11 31 30 0 22 21 2 1 3 7 5 4

2 1 2 2 4 S S 0 8 8 0 0 0 0 0 0

1 2 2 2 4 5 S 1 4 4 1 2 2 0 0 2

2 2 2 2 16 17 17 36 37 37 29 29 27 29 31 36

*1 denotes correct responses

2 denotes incorrect responses
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Table 15

Chi Square Tests for Study 2*

Cross Clas- HI H2  H3 H4  H5
sifications 2 2 2  2
by Training X df p XL df p x, df p X2 df p X df p

Q1- Q2 63.38 12 <.01 7.12 4 <.25 23.38 6 <.01 6.00 3 <.25 5.41 7 >.25

QI- C2 311.1 12 <.01 34.03 4 <.01 93.32 6 <.01 .27 3 <.95 .01* 7 >.5

Q C 295.6 12 <.01 31.02 4 <.01 87.14 6 <.01 .29 3 <.95 .007* 7 >.5
H1

Q Q1- Q2  18.33* 12 <.25 7.39 4 <.25 11.37 6,..1 - 3 - - 7

Q2- C2 209.4 12 <.01 15.72 4 <.01 53.96 6 <.01 .19 3 <.95 .01* 7 <.99

Q2- CI 198.6 12 <.01 14.29 4 <.01 50.43 6 <.01 .19 3 <.95 .004* 7 <.99
21

Q1- C1 13.61* 12 <.5 5.96 4 <.25 6,85 6 <.5 4.33 3 <.25 14.20 7 <.05

C2 - C 62.00 12 <.01 9.50* 4 <.05 16.94 6 <.01 7.50 3 <.10 66.75 7 <.01
•,-42 1

Q,- C 23.27* 12 <.01 15.10 4 <.01 16.87 6 <.01 15.05 3 <.01 25.39 7 1.01

QI- C 2 50.00 12 <.01 14.93 4 <.05 15.21 5 <.05 .90* 3 <.95 21.06 7 <.01

Q2 -C 2  34.56 12 <.01 10.01 4 <.05 8.57 6 4.25 .026* 3 <.99 27.63 7 <.01
24 2U

: C2 - C 43.57 12 (.01 1.75* 4 <.go 10.82 6 <.1 .23 3 <.99 .03 7 <.99
2 1

* preferred model denoted by an asterick
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Table 16

Contingency Tables for Study 3

Cross-Classifications

Response Patterns* Training in Training in Q6 Training in Q8 One week retention
Q test

Tasks - 1 r-4 -1 -4 C4 -4 - -+

01 01 01Cr L) C) 01 L) 01 0,

A B C D c . m M C4 Im M i M
U U U U U U U U U U

1 1 1 1 14 11 74 51 51 75 55 48 65 52 51

2 1 1 1 2 1 0 0 2 0 0 6 3 3 3

1 2 1 1 0 0 4 3 1 0 1 1 0 0 1

2 2 1 1 0 0 0 0 0 1 1 2 0 0 0

1 1 2 1 5 3 2 8 8 17 19 14 6 9. 6

2 1 2 1 0 0 0 0 0 0 0 4 0 0 1

1 2 2 1 0 0 0 1 0 1 0 1 1 1 3

2 2 2 1 0 0 0 0 1 0 1 1 0 1 1

1 1 1 2 0 5 18 7 5 5 16 8 7 2 0

2 1 1 2 0 0 0 0 0 0 0 4 0 0 0

1 2 1 2 0 0 5 1 3 0 1 1 0 0 1

2 2 1 2 0 0 4 0 0 1 0 4 0 0 1

1 1 2 2 104 104 26 54 14 37 43 6 51 66 11

2 1 2 2 4 5 2 2 0 0 0 4 3 3 3

1 2 2 2 7 7 10 14 23 4 3 3 2 2 2

2 2 2 2 36 36 27 31 64 31 31 65 29 28 83

*: 1 denotes correct response

2 denotes incorrect response
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Tab le 17

Chi Square Tests for

Study 3 *

Cross Classification 1 H2  H3 H4 H5

by Training df p XL df p XL df p XL df p X p

Q1-C2  1131 12 <.01 165.70 4 <.01 396.80 6 <.01 1.62 3 4.75 5.69* 7 <.75

0 -C 1099 12 <.01 152.30 4 <.01 387.60 6 <.01 1.33 3 <.75 1.89* 7 <.95
3

QI-C 2  154.20 12 <.01 42.94 4 <.01 74.19 6 <.01 29.47 3 (.01 27.38* 7 <.01

Q C 414.60 12 <.01 48.17 4 <.01 136.7 6 <.01 2.71 3 <.5 6.69* 7 <.75

C -C 127.70 12 <.01 18.14 4*<.01 55.20 6 <.01 16.63 3 <.01 14.37 7 <.01
2.3

=QI-C 2 293.50 12 <.01 30.28 4 <.01 108.15 6 <.01 6.75 3 <.05 6.69* 7 <.5

r- Q -C 325.60 12 <.01 21.81 4 <.01 108.97 6 <.01 5.64 3 <.25 6.02* 7 <.5
C -

3 C2C 23.24 12 <.05 7.50*4 >.l 14.29 6 <.05 8.14 3 <.05111.26 7 <.10

(I C 453.50 12 <.01 65.82 4 <.01 161.68 6 <.01 10.77 3 <05 7.71* 7 <. 5

S-C3 635.00 12 <.01 91.66 4 <.01 240.70 6 <.01 9.71 3 <.05 11.37* 7 <.10

C -C 47.68 12 <.Ol 13.70 4 <.01 27.75 6 <.01 7.98 3 <.05 9.34* 7 <. 252 3

*Denotes preferred model
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Table 18

Positive Effects Models for Q1 and C2

Model Equations X2L df p

HCij = 43.63 3 0.000

H2 ¢C = 8 C + BAC 15.36 2 0.000

H=3 0Cij = + B  26.80 2 0.000

1 + + +  0.00* 0 1.00

H I. = 1.55 1 .25
51

In the equations, A represents Q1 assessed at time 1, B represents C2

assessed at time 1, and C represents C measured at time 2. 0C.. indicates the
2 1

natural logarithm that variable C will be passed as opposed to failed when variables

A and B are at levels i and j respectively ( i = 0, 1; J = 0, 1). The term

B refers to the mean of the natural logarithm of the odds that variable C will be

passed as opposed to failed for all values of variables A and B. The 8 AC i indi-

cates the main effect of A on the log odds that C will be passed rather than

failed when A is at level i (i = 0, 1). The other terms are similarly defined.

The asterick denotes the preferred model.
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Table 19

Positive Effects Models for C2 and C3

23

Model Equations X2L df P

H 4DCi B 49.93 3 0.000
1 Cij E A 

. 2
H2 Cij 8 C 8 AC " 7.26 2 0.026

H3  C 8 C+  26.80 2 0.000

H4 Cij = a + 8A7i + B
BCj  .41* 1 < .75

H #B 63.47 1 0.000

In the equations, A represents C2 assessed at time 2, B represents C3

assessed at time 2, and C represents C measured at time 3. The equatiops are
3

defined as they were in Table 7. The asterick notes the preferred model.
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Q1 Instructions for Studies 2 and 3

The next phase of this instructional program will present the steps necessary to
solve for quadratic equations. Equations of this kind involve more than one

value for the unknown X. Your goal is to simplify the given equation into an
equation with separate expressions each containing an X. Each of these expressions
is used to attain a value for X.

STEP A
Determining X0 + 6X + 5 = 0 The highest exponent in the initial
the number of equation refers to the number of X
values for X values we are solving for.

+ 6X + 5 = 0 "JThere are 2 values for X since theI highest exponent in the initial equation
is 2.

STEP B )( ) 0 Set up your sets of parantheses.

Simplify '1 2 3 4
(_ i) _) * 

0  Put in locations I and 3 factors of the
Ist term (X2 ) in the equation.

1 2 3 4
(X )iX 5) = 0 Put in locations 2 and 4 factors of the

3rd term (5) in the equation.
1 2 3 4
(WDl)(X(E)) = 0 Between these locations go plus or

minus sings. Remember, you need to get
a combination of factors and signs
that cross multiply to equal the equa-
tion you are solving.

.1 2 3 4
(X + 1)(X + 5) = 0 Check to see if these two expressions

cross multiply to equal the equation
_you are solving.

1 2 3 4~
(X1 + )( + 3 ) 0 To cross multiply: multiply the elements

in location l and 3, 1 and 4, 2 and 3,
X 5X lX, 5 and 2 and 4.

X2 + 5X + IX + 5 = 0 Add these four multiplicative products
together.

X + 6X + 5 =0 Collect terms and check to see if the
result is the same as the step A eouati
If the result does not equal the step A
equation, you must try other combina-
tions of factors or signs in the
parentheses (return to Step ).
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page 2

STEP C

Solve for the X + 1 0 and If the result equals the step A equation,
X values X + 5 = 0 solve for the X values by setting each

expression equal to 0.

(X + 1) - 1 = 0 - 1 The X values are then obtained by solving
each of these equations. Thus, the two

X = -1 values that will make the original equatio,
- - equal 0 have been found.

(x+s) -5=0-5

X = -5 Thus the two values for X in the equation
are:

X =-1

X = -5

STEP D(optional)

Check your (-1) 2 + 6(-l) + 5 = 0 You can check to see if these are the
solution correct values by inserting each of them

+ (-6) + 5 0 into the original equation and checking
S+ )whether or not the solution to the

equation is 0.

, (-5)2 + 6(-5) + 5= 0

25+ (-30).. 0
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Now you try to solve the equation:

X2 + 5X + 4 : 0

I

I
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2

Step A + 5X + 4 0 There are 2 values of X to solve for, since
2 is the highest exponent.

Determine the
number of
values for X

1 2 3 4
Step B ( )(- _) . 0 Set up your parentheses.

Simplify the 1 2 3 4
equation (X + 4) (X + 1) - 0 Put in IQcations 1 and 3 factors of the

ist term (X2) in the equation, and
in locations 2 and 4 factors of the 3rd
term (4) of the equation. Finally,
put some signs between these locations.
Remember, you need to get a combination
of factors and signs that crossmultiply
to equal the equation you're solving.

1 2 3 4
(X + 4) (X + 1) = 0 Crossmultiply to check and see if the

two expressions are the ones you want.
Crossmultiply and add together the four

X 2 + X +U+4 0 products obtained from multiplying the
elements in location 1 and 2, 1 and 4,
2 and 3, and 2 and 4.

X2 + 5X + 4 0 Collect terms and check to see if the
result equals the Step A equation. If
the result does not equal the equation in
Step A, try other combinations of factors
or signs in the parentheses (return to the
beginning of Step B).

Step C X + 4 0 If the result equals the Step A equation,
Solve for solve for the X values by setting each
X]values (X+4) - 4 - 0-4 expression equal to 0, and then solving

each equation for X. Thus, two values
X = -4 that will make the original equation

equal to 0 have been found.

X + 1 0 The 2 values for X are:

(X+l) -1 0-1 X -- 4

X -- X -
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Now, you try to solve the following equation:

X2 + 7X + 12 = 0

I
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Here is the solution:

X2 + 7X + 12 - 0

1 2 3 4
(X + 4)(X + 3) - 0

2
X + 3X + 4X + 12 0

X+4- 0

X - -4

X+ 3- 0

X -3
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Q2 Q2 Instructions for Study 2

The next phase of this instructional program will present the
steps necessary to solve quadratic equations. Equations of
this kind involve more than one value for the unknown X. Your
goal is to simplify the given equation with separate expressions,
each containing an X. Each of these expressions is used to attain

a value for X.

Step A 3X 2 + 3X - 18 = 0 The highest exponent in the initial

Determine the equation refers to the number of X

number of values values we are solving for.

for X 3Xr+ 3X -18 0 'There are 2 values for X since the
highest exponent in the initial
equation is 2.

Step B 3(X2 + X - 6) =0 Since there is a highest factor greater
Factor out than 1 common to all the terms of the

common elements equation, this number can be factored
out of the equation.

3(X2 + X - 6) 0 0 Dividing both sides of the equation by
3 3 this factor leaves you with an equation

that is simpler to solve.

X2 + X - 6 =0 If you solve this simpler equation you
will also have the values that solve

the initial equation.

Step C )( ) = 0 Set up your sets of parentheses.

Simplify the
equation 1 2 3 4

(X )(X ) = 0 Put in loca ions 1 and 3 factors of the

1st term (X ) of the simpler equation.

1 2 34
(X 3)(X 2) = 0 Put in locations 2 and 4 factors of the

3rd term (-6) of the simpler equation.

1 2 3 4
(X + 3)(X - 2) = 0 Between these locations go plus or minus

signs. Remember, you need to get a

combination of factors and signs that

cross multiply to equal the equation

you're solving.

1 2 3 4
(X + 3)(X - 2) = 0 Check to see if these two expressions

cross multiply to equal the equation

you're solving.

I
I
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1 2 3 4
(X + 3)(X - 2) = 0 To cross multiply: Multiply the elements

in location 1 and 3, 1 and 4, 2 and 3,
and 2 and 4.

X 2 , -2X, 3X, -6

X2 + (-2X) + 3X +(-6) = 0 Add these four multiplicative products

together.

X2 + X - 6 = 0 Collect terms and check to see if the
result is the same as the simpler
equation.

If the result does not equal the equation
at the end of Step B, try other combinations
of factors or signs in the parentheses
(return to the beginning of Step C).

Step D X + 3 = 0 If the result does equal the equation at

Solving for and the end of Step B, solve for the X values

X - 2 = 0 by setting each expression equal to 0.

X + 3 = 0 X - 2 = 0 The X values are then obtained by solving
each of these equations. Thus, the two

(X+3) -3 = 0 - 3 (X-2 +2 = 0 values that will make the original
equation equal 0 have been found.

X =-3 X= 2

Step E 3(-3) 2+3(-3)-18 = 0 Now insert each of these values into the
original equation and check to see

(Optional) 3(9)+(-9)-18 = 0 whether the answer to the equation

equals 0.
27 - 27 = 0

3(2) 2+3(2)-18 = 0

3(4)+6-18 = 0

12 + 6 - 18 =0
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Now you try to solve the equation:

2X 2+ 8X -10 0
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Step A

Determining 2XZ+ 8X - 10 = 0 There are 2 values of X to solve for,
the number of since 2 is the highest exponent.
values of X

Step B

Factor out 2(X2 + 4X - 5) = 0 Factor out any highest number common to
common all the terms in the equation.
e 2(X + 4X - 5) 0 0 Dividing both sides of the equation by

2 2 this factor leaves an equation that
is easier to solve.

X2 + 4X - 5 =0

Step c ( )( ) = 0 Set up your parentheses.

Simplify
the 1 2 3 4

equation (X + 5)(X - 1) = 0 Put in locati2ns 1 and 3 factors of the
first term (X ) of the equation at
the end of step B , and in locations 2
and 4 put factors of the 3rd term (5).
Between these locations put signs.
Remember, you need to find combinations
of factors and signs that cross multiply

to equal the equation you're solving.
1 2 3 4
(X + 5)(X - 1) = 0 Now cross multiply to check and see if

the two expressions are the ones you

2 want. To cross multiply: Add together
X - X + 5X 5 0 the four products obtained from multi-

plying the terms in locations 1 and 3,

1 and 4, 2 and 3, 2 and 4.

X2 + 4X - 5 = 0 Now collect terms and check to see if
the result equals the equation at the
end of step B.

If the result does not equal the equation
you must try other combinations of factors
and signs (return to Step C).

Step D

Solve for X + 5 = 0 If the result does check, we solve for
the X (X + 5) - 5 = 0 - 5 the X values by setting each expression
values X = -5 equal to 0, and then solving each

X -= 0 equation for X. The result will be the
(X - )+ = 0 + 1 2 values that will make the original
X - + 1 equation equal 0. You can check these

values by inserting them into tht

original equation and checki: to ee
whether your answer is 0.
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Now you try to solve the following equation:

3X 2 + 9X -12 =0
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page 6 Q2

Here is tne solution:

3X + 9X- 12 0

3(X 2 4- 3X - 4) 0

S 2 + 3X -4 =0

S 1 2 4

(X + 4)(X- 1) 0

X=4= 0 X-1=O

X=-4 X=1
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page I C1 Instructions for Study 2 C1

The next phase of this instructional program will present the steps necessary to
solve cubic equations. Equations of this kind involve more thanone value for the
unknown X. Your goal is to simplify the given equation into an erquation with separate
expressions each containing an X. Each of these expressions is used to attain a
value for X.

Step A

Determine the 4X3 _ 20X 2 + 24X = 0 The highest exponent in the initial
number of eouation refers to the number of X
values for values we are solving for.

4 20X2+ 24X 0 There are 3 values for X since the

highest exlonent in this equation is 3.

Step B 4X(X2 
- 5X + 6) =0 Since the variable X is conmon to all

Facto outthe terms of the equation, factor itFactor out tetrso h qain atri

out of the equation.comtmon

elements

Step C 4X( )( ) 0 Set up your sets of parentheses.

Simplify 1 2 3 4

the 4X(X _)(X ) = 0 Put in locations 1 and 3 factors of
tin the 1st term (X2 ) of the equation

equation within the parentheses in step B.

1 2 3 4
4X(X 3)(X 2) = 0 Put in locations 2 and 4 factors of

the 3rd term (6) of the equation
within the parentheses in step B.

1 2 3 4
4X(X - 3)(X - 2) 0 Between the locations go minus or

plus signs. Remember, you need to get
a combination of factors and signs
that will cross multiply to equal
the equation within the parenthesis
in step B.

4X(X - 3)(X - Z) = 0 To cross multiply: multiply together

2 -the elements in location 1 and 3, 1
X , -2X, -3X, 6 and 4, 2 and 3, and 2 and 4.

4X(X2 + (-2x) +(-3X) + 6 = 0 Add these four multiplicative products
together.

4X(X2 - 5X + 6) = 0 Collect these terms and check to see if
the result is the same as the equation
within the parentheses in step B.

If the result does not equal the step
B equation, try other combinations
of factors or signs in the parentheses

(return to the beginning of Step C).



page 2 -114-C

Step D

Solve for -4X = 0 If the result equals the step B

X equation, solve for the X values by
values -X -3 = 0 setting each of the expressions in

step C equal to 0.
-X- 2= 0

4 0Solve each of these equations to get

X= 0 the three X values.

X- 3 =0

(X - 3) + 3 = 0 + 3

X= 3

X- 2 = 0

(X - 2) + 2 = 0 + 2

X =2

Step E 4(0)3- 20(0)2 + 24(0) = 0 To check if these are the correct
(Optional) values, insert each of them into the

CI~eck 0 - 0 + 0 = 0 original equation and check to see

solution 2 if your answer is 0.4(3)3 -20(3)
2 + 24(3) 0

4(27) - 20(9) + 72 = 0

180 - 180 + 72 = 0

180 - 180 = 0

4(2)3 - 20(2)2 + 24(2) = 0
4(8) - 20(4) + 48 = 0

32 - 80 + 48 = 0

80 - 80 - 0
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Now you try to solve for X in the equation:

3X 3 -18 X2+ 15X 0
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Step A 3 - 18X 2 + 15X = 0 There are 3 values to solve for,

Determine the since 3 is the highest exponent.
number of
values for X

Sten B 3X(X - 6X + 5) = 0 Since the variable X is common to all

Factor out the terms of the equation, it car
be factored out.

common
elements

Step C 3X( )( ) = 0 Set up your parentheses.

Simplify the 1 2 3 4
equation 3X(X - 5)(X - 1) = 0 Put in locations 1 and 3 factcrs of

the 1st term of the equation within
the parentheses in step B(X2), and in
location 2 and 4 factors of the 3rd
term of the equation within the
parentheses in step B(5). Finally,
put some signs between these locations.
Remember, you need to get a combina-
tion of factors and signs that cross
multiply to equal the equation you're
solving.

1 2 3 4
3X(X - 5)(X - 1) = 0 Cross multiply to check and see if

the two expressions are the ones

3X(X 2 + (-X)+(-5X)+5 = 0 you want. Cross multiply and add
together the four products obtained
from multiplying the elements in locatior
1 and 2, 1 and 4, 2 and 3, 2 and 4.

3X(X - 6X + 5) 0 Collect terms and check to see if the
result equals the equation in step B.

If the result does not equal the
equation in step B, try other corbina-
tions of factors or signs in the
parentheses (return to the beginning
of Step C).

Step D 1 r 3X 0 If the result equals the step B equation

Solve for X 0 solve for the X values by setting each
X values of the expressions in step C equalX ales X -5 = 0 to 0. Then solving for X in each ofS(X -5) + 5 0 + 5 these equations gives us the 3 values

X 5 for X that solve the initial equation.

x-i = 0

3 (X -) + 1 =o +

IX 1
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Now you try to solve for X in the equation:

2X - 8X 2 + 6X = 0

V.
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Here is the solution:

2X 3- 8X 2+ 6X =0

2X( 2-4X +3) 0

1 2 3 4.
2X(X -3)(X - 1) =0

2
2X(X -X -3X +3) =0

2X =0

x= 0

X- 3 =0

X= 3

x= 10

X



-1 19- r 2
C. Instructions for Studies 2 and 3

The next phase of this instructional program will present the steps necessary
to solve cubic equations. Equations of this kind involve more than one value for

the unknown X. Your goal is to simplify the given equation into an equation with
separate expressions each containing an X. Each of these expressions is used to
attain a value for X.I

aSTEP A 3 2
Determine the 3X + 7X + 2X - 0 The highest exponent in the initial
number of equation refers to the number of X
values for values we are solving for.

3 + 2XO -0There are 3 values for X since the highes"
exponent in this equation is 3.

STEP8 2

Factor out X(3X + 7X + 2) a 0 Since the variable X is common to all
common the terms of the equation, factor it
elements out of the equation.

X() = 0 Set up your sets of parentheses.
STEP C
Simplify the 1 2 3 4
equation X(3X _)(X _) = 0 Put in locations l.and 3 factors of the

Ist term (3X2 ) of the equation within
the parentheses in step B.

1 2 3 .
X(3X 1)(X 2) = 0 Put in locations 2 and 4 factors of the

3rd term (2) of the equation within
the parentheses in step B.

1 2 3 4
X(3X + l)(X + 2) - 0 Between the locations go minus or plus

signs. Remember, you need to get a
combinaion of factors and signs that
will crossi multiply to equal the equation
within the parentheses in step B.

.1 23 4
X(3X + 1)(X + 2) = 0 To cross multiply: multiply together

the elements in location 1 and 3,
3X2 , 6X, lX, 2 1 and 4, 2 and 3, and 2 and 4.

X(3x 2 + 6X + IX + Z) - 0 Add these four multiplicative products
together.

X(3X2 + 7X + 2) =0 Collect these terms and check to see if
the result is the same as the equation
within the parentheses in step B.

If the result does not equal the step B
equation, try other combinations of
factors or signs in the parentheses
(return to the beglnning of Step C).

Ap
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STEP 0 X * 0 If the result equals the step B equation,
+1-0 solve for the X values by setting

Solve for X 3X each of the expressions in step C
valuesX + Z= 0 equal to O.

----------------------

x 0

L43X + 1 a 0 Solve each of these equations to get
the three X values.

(3X + 1) - I - - 1

3X - -1

1/3(3X) (-1)1/3

X - -1/3

Thus, the three values for X in the equati
are: X 0

(X + 2) 2 0 2 X -2

X - -2

STEP E (optional)

Check solution 3(03) + 7(0)2 + 2(0) 0 To check if these are the correctvalues.
insert each of the three values for X

0 + 0 -into the original equation and checik
+ 0+0=0 to see if your answer is 0.

3("1/3)3 + 7(-1/3)2 + 2 (-1/3) = 0
_..3 (-1/27) + 7(1/9) + (-2/3) - 0

3(2) 3 + 7(-2) + 2(-2) - 0

3(-8) + 7(-2) 2 + 2(-Z) - 0
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Now you try to solve for X in the equation:

I 2X 3 + 9X 2 + 4X =0
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STEP A

Determine the 2,+ 9X2 + U - 0 There are 3 values to solve for,
number of since 3 is the highest exponent.
values for X

STEP B

Factor out X(2X2 + 9X + 4) - 0 Since the variable X is common to all
common the terms of the equation, it can
element; be factored out.

STEP C X( )( ) - 0 Set up. your parentheses.

Simplify the 1 2 3 4
equation X(ZX + 1)(X + 4) 0 Put in locations 1 and 3 factors of the

1st term of the equation within the
parentheses in step B (2X2), and in
location 2 and 4 factors of the 3rd
term of the equation within the
parentheses in step B (4). Finally, put
some signs between these locations.
Remember, you need to get a combination
of factors and signs that cross multiply
to equal the equation you're solving.

1 2 3 4
X(2X + 1)(X + 4) 0 0 Cross multiply to check and see if the

two expressions are the ones you want.
X(ZX2 + 8X + IX + 4) 0 Cross multiply and add together the

four products obtained from multiplying
the elements in location 1 and 2, 1 and 4,
2 and 3, and 2 and 4.

X(ZXZ + 9X + 4) - 0 Collect terms and check to see if the
result equals the equation in step B.

If the result does not equal the equation
in step B, try other combinations of
factors or signs in the parentheses
(return to the begining of Step C).

STEP 0
Solve for L X - 0 If the result equals the step. B equation,
Sovaes - solve for the X values by setting each of
X values 2X + I = 0 the expressions in step C equal to 0.

Then solving for X in each of these
(2X + 1) - 1 - 0 - 1 equations gives us the 3 values forX

that solve the initial equation.
E(2X) + 4= 0 The 3 values for X are:

L X -3 (X+4) -4 -0-4

Xu-L X =- ,
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Now you try to sole for X in the equation:

3X 3 + lox 2 + 3X =0
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Here is the solution:

I
I 3X3 + lOx2 + 3X * 0

X(3X2 + lOX + 3) - 0

I X(3X + 1)(X + 3) 0 0

X(3X2 + 9X + IX + 3) -0

X=O

- 3X+l =0

X - -1/3

X+3=O

X - -3

___ ____________ ___________ __
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The next phase of this instructional program wii present the steps necessary to
solve cubic equations. Equations of this kind involve more than one value for the

unknown X. Your goal is to simplify the given equation into an equation with separate
expressions each containing an X. Each of these expressions is used to attain a value
for X.

STEPA 3 2
Determine the 24X + 28X + 8X - 0 The highest exponent in the initial
number of equation refers to the number of X
values for values we are solving for.

24 + 8X 0 There are 3 values for X since the
highest exponent in this equation is 3.

STEP B 2
Factor out X(24X + 28X + 8) 0 Since the variable X is common to all
common the terms of the equation, factor it
elements out of the equation.

4X(6X2 + 7X + 2) = 0 Since there is a highest common factor
greater than 1 common to all the ter--s
of the equation, this number can also
be factored out of the equation. In this
case that number is 4.

STEP C
Simplify 4X( )( ) 0 Set up your sets of parentheses.
the
equation i 2 3 4

4X(3X )(X ) " 0 Put in locatIons I and 3 factors of the
ist term (6X ) of the equation within
the parentheses at the end of Step B.

1 2 3 4
4X(3X 2)(2X 1) - 0 Put in locations 2 and 4 factors of the

3rd term (2) of the equation within the
parentheses at the end of Step B.

1 2 3 4
4X(3X + 2)(2X + 1) - 0 Betweten the locations go minus or plus

signs. Remember, you need to get a
combination of factors and signs that
will cross multiply to equal the equation
within the parentheses at the end of Step B

4X(3X +2)(2X + 1) - 0 To cross multiply: multiply together the
elements in location 1 and 3, 1 and 4,
2 and 3, and 2 and 4.

2
6X , 3X, 4X, 2

4X(6X2 + 3X +4X + 2) = 0 Add these four multiplicative products
together.

4X(6X2 + 7X + 2) = 0 Collect these terms and check to see if
the result is the same as the equation
within the parentheses in Step B.
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PIf the result does not equal the Step B
equation, try other combinations of
factors or signs in the parentheses
(return to the beginning of Step C).

STEP D
Solve for X 4X 0 If the result equals the Step B equation,
values solve for the X values by setting each

3X + 2 - 0 of the expressions in Step C equal to 0.

2X + 1 - 0

4X = 0 Solve each of these equations to get the
X - 0 three X values.

3X+ 2 - 0

(3X + 2) - 2 = 0-2

3X - -2

1/3(3X) - (-2)1/3

X - -2/3

2X + 1 - 0 Thus, the three values for X in the equatio
are:

( +) - 1- 0-1 X - 0
X - -2/3

2X = -1 X - -1/2

1/2(2X) - (-1)1/2

X - -1/2

STEP E
(Optional) 24(0) + 28(0) + 8(0) - 0 To check if these are the correct values,
Check insert each of the three X values into
solution 0 + 0 + 0 - 0 the original equation and check to see if

your answer is 0.
24(-2/3) + 28(-2/3) + U-2/3) - 0

24(-8/27) + 28(4/9) + 8(-2/3) - 0

24 (-8/27) + 28 (12/27) + 8(-18/27) - 0

24(-1/2)3 + 28(-1/2)2 + 8(-1/2) - 0

24(-1/8) + 28(1/4) + -8/2 - 0
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I
Now you try to solve for all X values in the equation:

3 2
18X + 42X + 12X = 0

-I
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STEP A3 2
Determine the 180 +4 +12X - 0There are 3 values to solve for, since
number of 3 is the highest exponent.
values for X

STEP B 2
Factor out 3X(6X +14X+4) 0 Since the variable X is common to all the
common terms of the equation, it can be factored
elements out. Also, a highest common number to

all the terms, 3, canbe factored out.

Step C
Simplify the 3X( )( ) 0 Set up your parentheses.
equation

1 2- 3 '4

3X(2X + 4)(3X + 1).- 0 Put in locations 1 and 3 factors of the
1st term of the equation yithin the
parentheses in step B (6X ), and in
location 2 and 4 factors of the 3rd term
of the equation within the parentheses in
Step B (4). Finally, put some signs
between these locations. Remember, you
need to get a combination of factors and
signs that cross multiply to equal the
equation you're solving.

1 2 3 4
3X(2-X + 4)(3X + 1) - 0 Cross multiply to check and see if the

two expressions are the ones you want.
2 Cross multiply and add together the

3X(6X + 2X + 12X + 4) - 0 four products obtained from multiplying
the elements in location 1 and 2, 1 and
4, 2 and 3, and 2 and 4.

3X(6X2 + 14X + 4) - 0 Collect terms and check to see if the
result equals the equation in Step B.

If the result does not equal the equation
in Step B, try other combinations of
factors or signs in the parentheses
(return to the beginning of Step C).

STEP D
Solve for r3X - 0 If the result equals the Step B equation,
X values X- 0 solve for the X values by setting each of

the expressions in Step C equal to 0.
2X + 2 -0 Then solving for X in each of these

(X +4)-4- 0-4 equations gives ut the 3 values for X
that solve the initial equation.

2X - -4

1/2(2X) - (-4)1/2 The 3 values for X are:

X--2 X-0
X - -2

3X + 1 - 0 X -- /3
(3X+1) -l - 0 - 1
3X - -1

1/3(3X) - (-1)1/3
X - -1/3
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Now you try to solve for all values of X in the equation:

40X 3+ 34X 2+ 6X 0
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Here is the solution:

40X 3 + 34X2 + 6X - 0

2X(20X 2 + 17X + 3) - 0

2X(4K + 1) (5X + 3) - 0

2X (20X2 + 12X + 5X + 3) 0

2x(20X 2 + 17X + 3) - 0

21-0
X~ 0

4X + 1 - 0

(4X + 1) - 1 - 0 - 1

4X - -1

1/4(4X) - (-1)1/4

X - -1/4

5X + 3 - 0

(5X + 3) - 3 - 0 - 3

5X - -3

1/5(5X) - (-3)1/5

X - -3/5
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- STUDY 2

Pretest for Study 2

X2 + 6X + 5 =0 3X3 + 7X2 + 2X= 0

2X3 + 9X + 4X =0 3X2 + 3X - 18= 0

X2 + 5X + 4 =0 4X - 20X 2 + 24X= 0

22X
2 + 8X -10=0 3X3 -18X 2 +15X=O

I
'I

i I_ _ _ _ _i

&.,,~
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Posttest for Study 2

Please solve for all possible values of X in the following equations:

I

5X3 + 16X 2 + 3X 0 4X2 + 8X -12 = 0

X2 + 4X + 3 =0 2X3 + 7X2 + 3X= 0

2X3 -12X 2 + 18X= 0 X2 + 6X + 8 =0

2X2 + 4X 16 0 4X - 24X 2 + 20X -0

I
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Pretest for Study 3

Please solve for all possible values of X in the following equations:

23 2x + 6X + 5 = 0 20X 3 + 34X 2 + 6X = 0

2X3 + 9X2 + 4X = 0 3X3 + 7X2 + 2X = 0

18X 3 + 42X 2 + 12X= 0 X2 + 5X + 4 =0
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STUDY 3

Posttest 1: Following Q 1 Instruction

Please solve for all possible values of X in the following equations:

3 2 3+ 7 2 +K 012X + 28X + 16X 0 2XK X+3

2 3 2
K + 4X + 3 0 18X + 39X + 15X 0

5X 3 + 16X 2 + 3X 0 X 2 + 6X + 8-0
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Posttest 2: Following C 2Instructions

Please solve f or all possible values of X in the following equations:

4X 3 + 13X 2 + 3X 0 0 X

x2+ 5X+ 6 =0 30X 3 + 33X 2 + 9X 0

36X 3 + 36X 2 + 8X =0 3X 3+ llX2 + 6X =0
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I Posttest 3: Following C3 Instructions

Please solve for all possible values of X in the following equations:

20X + 60X + 45X 0 x+ 7X + 10 0

x2+ 9X+ 20 0 4X 3 + 7X2 + 3X 0

5x 3 +12X 2 4X 024X 3+ 26X 2+ 6X 0



I STUDY 3

f Retention Test

* Please solve for all possible values of X in the following equations:

x+ 7X +12=O0 3X 3 + 8X2 + 4x =0

16X 3 + 48X 2 + 20X =Ox + 8X +16=O0

27X 3+ 24X2 + 1X - 03X 3+ 5X 2+ 2X0



I -13(

I
I
I
I

APPENDIX C

V
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Appendix C

The appendix describes the latent class techniques and modified path

analysis procedures used in the present investigation. Latent class models are

designed to represent hypotheses about unobserved (latent) variables. The latent

class approach can be used to generate maximum likelihood estimates of expected

cell ferquencies under the assumption that the model being examined is true.

This estimate of any particular response pattern is obtained by computing the It

joint probability of the response pattern and the latent class for each latent

class. The joint probabilities, which are computed iteratively, are then summed

across all latent classes and multiplied by the sample size (Goodman, 1974).

This is illustrated by considering two pairs of identical items, A and A'

and B and B'. The general unrestricted latent class model for these items

asserts that:

Tr"r X-'BB'Xijkl= 5- ijklt

t = 1

where ijkl is the probability of response pattern ijkl (i = 1, 2; j = 1, 2;

k = 1, 2; 1 = 1, 2) and 7 ijklt is the joint probability of response

pattern ijkl and latent class t (t = 1 to T). The joint probability may be

expressed as:

x x X'x gx g'x
t it j Jt ' kt ' lt

where n t is the probability of latent class t iT is the conditional
t - it

probability that item A will be responded to at level i, given latent class t

and kt t nd it are similarly defined.

Various kinds of restrictions can be impised on the latent class models.

For example, the concept of a domain was previciuily mentioned. This indicates

that certain classes of learners ought to perform in similar ways across items.

Latent class models can represent this type of assumption through certain
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restrictions. For instance, for the mastery latent class, one may wish to

assume that masters pass all the items, while in the nonmastery latent class

- one might assume failure of all items. These assumptions would be reflected

in the following restrictions:

21 21 21 21 1

Xx X'x '
12 12 12 12 1

where 7 21 is the probability of failing item A given memberhip in latent2x
class 1 (nonmastery class), and A 12 is the probability of passing item A

given membership in latent class 2 (mastery class). The other conditional

response probabilities are similarly defined.

Latent class models are tested by assessing the correspondence between

observed cell frequencies and estimates of expected cell frequencies using the

chi-sruared statistic. Low values of X 2 indicate models which provide an

adequate fit to the data. Clifford Clogg (Note 2) has developed a computer

program to carry out the iterative process used to generate maximum likelihood

estimates to expected cell frequencies, and which computes the X2 value to

test the fit of a model to a data set. Clogg's program was used in the present

investigation.

Goodman's (1973) modified path analysis approach is designed to represent

causal relations among a set of categorical variables. Like the latent class

approach, Goodman path models can be used to generate maximum likelihood esti-

mates of expected cell frequencies under the assumption that the model being

tested is true.

Goodman's models are designed to be analogous to procedures such as

regression and the analysis of variance based on the general inear model. The

Goodman models may be expressed in either a multiplicative or an additive



form. The additive version which makes use of natural logarithms is intended

to make the models analogous to analysis of variance and regression procedures.

The general modified path analysis model for three variables can be repre-

sented as:

C =C + AC + BC + aABC
ij + ij

where .. is the natural logarithm of the odds that variable C will be at

level K, level 1 as opposed to level 2, when variables A and B are at levels

i and j respectively, BC is the general mean for variable C expressed in

logarithmic form, ACi is the main effect of variable A, a BC is the main effect

of variable B, and ABCij is the AB interaction.

B .  is a direct function of expected cell frequencies. Maximum likeli-

hood estimates of expected cell frequencies generated under the model being teste

tested are used in computing CI.


